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Key Words: Generalized Lorenz Curve; Stochastic Dominance; Method of Moments; Multiple Inequality
Restrictions

JEL Classification: C12, D31, D63.

∗Corresponding author.

1



Contents

1 INTRODUCTION 3

2 LITERATURE 5

3 GENERALIZED LORENZ DOMINANCE 8
3.1 Generalized Lorenz Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Income Distributions and Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Social welfare functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Generalized Lorenz dominance and social welfare . . . . . . . . . . . . . . . . . . . . . 9

4 SAMPLE GENERALIZED LORENZ CURVE ORDINATES 9
4.1 Sample Generalized Lorenz Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Asymptotic Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Covariance Matrix Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 TESTING FOR GENERALIZED LORENZ DOMINANCE 16
5.1 Multivariate One-Sided Tests and Multivariate Inequality Tests . . . . . . . . . . . . . . . . . 16
5.2 θmin Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 tmin Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 MONTE CARLO EXPERIMENTS 18
6.1 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 APPLICATION 21
7.1 Income Distributions in Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Testing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 DISCUSSION 25

9 ACKNOWLEDGMENTS 25

A APPENDIX 1: PROOFS 25
A.1 Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.2 Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.3 Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.4 Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.5 Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B APPENDIX 2: DATA 32

2



1 INTRODUCTION

While many empirical works provide estimates of various inequality measures to compare income or wealth

inequality across regions or over time, they rarely report the standard errors; thus the readers rarely know

about possible sampling errors in the estimates. Although statistical inference procedures do exist in the

literature, few empirical works use them. This is perhaps because those procedures are somewhat compli-

cated.

Among various criteria for comparing income (or wealth) distributions, this paper focuses on the gen-

eralized Lorenz (GL) curve for two reasons. First, Shorrocks (1983) shows that one income distribution is

preferable to another under any increasing and Schur-concave (S-concave) social welfare function if and only

if the GL curve of the first distribution lies above that of the second (GL dominance); hence the GL curve

itself is an interesting object to study. Second, once we obtain the asymptotic distribution of a vector of

sample GL curve ordinates, the delta method gives the asymptotic distribution of the corresponding vector

of sample Lorenz curve ordinates, and hence those of the corresponding estimators of the Gini coefficient as

well; see Beach and Davidson (1983).

This paper makes two contributions to the literature on statistical inference for GL dominance. First, we

derive the asymptotic distribution of a vector of sample GL curve ordinates, interpreting it as a method-of-

moments (MM) estimator, and obtain a new expression of its asymptotic variance–covariance matrix. Beach

and Davidson (1983) apply the asymptotic theory of linear functions of order statistics to obtain a different

expression of the same result. Since the asymptotic theory of MM estimators is standard in econometrics

while that of linear functions of order statistics is not, our derivation should be more intuitive. Although

the estimating function of our MM estimator is not differentiable with respect to the parameter vector, we

can apply empirical process methods to derive the asymptotic distribution; see Andrews (1994).

Second, we propose a simple simulation-based test for GL dominance (and for multiple inequality re-

strictions in general) that is consistent and asymptotically has the correct size. Let θ0 ∈ <k be a parameter

vector, e.g., the difference between two vectors of ordinates from two GL curves. For testing a joint hypothesis

3



H : θ0 ≥ 0, two formulations are possible. A multivariate one-sided testing problem is

H0 : θ0 = 0 vs. H1 : θ0 ≥ 0.

This formulation is unreasonable if it is possible that θ0 6≥ 0. Instead, we focus on a multivariate inequality

testing problem

H0 : θ0 ≥ 0 vs. H1 : θ0 6≥ 0,

and propose simultaneously testing for j = 1, . . . , k,

H0,j : θ0,j ≥ 0 vs. H1,j : θ0,j < 0.

A simultaneous test accepts H0 if it accepts H0,1, . . . ,H0,k. Let tn be a vector of the t statistics for testing

these separate hypotheses given a sample of size n. Let tn,min be the minimum component of tn. Then a

simultaneous one-sided t test accepts H0 if tn,min is above a critical value (hence we call it a tmin test). Unless

the t statistics are asymptotically independent, it is difficult to derive the asymptotic distribution of tn,min

analytically. Given the asymptotic distribution of tn, however, we can simulate the asymptotic distribution

of tn,min under the least favorable case in H0, i.e., θ0 = 0, and evaluate the asymptotic p-value. Aura (2000)

proposes a similar test for multivariate one-sided testing problems.

Alternatively, one can extend the classical asymptotic tests to tests for multiple inequality restrictions, in

which case the test statistics have an asymptotic χ̄2 distribution, a mixture of χ2 distributions with different

degrees of freedom, under the least favorable case in H0; see Kodde and Palm (1986) and Wolak (1989).

Xu (1997) and Dardanoni and Forcina (1999) propose a distance (Wald) test for GL and Lorenz dominance

respectively. An interesting question here is, which of the two tests is better? (Both tests usually require

simulation, because the asymptotic distributions of the test statistics are nonstandard.) We perform Monte

Carlo experiments and find that the tmin test tends to be more powerful against crossing curves, while the χ̄2

test tends to be more powerful against other alternative hypotheses. The results coincide with the analytical

result by Goldberger (1992), who considers testing inequality restrictions on the mean vector of a bivariate

normal distribution.

A notable feature of these testing procedures is that they are applicable even when only grouped data

are available. As an example, we apply both the tmin and χ̄2 tests to the publicly available grouped data of
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the National Survey of Family Income and Expenditure in Japan. The tests accept the null hypothesis that

income distribution in Japan improved from 1979 to 1994, and reject the null hypothesis that it worsened

from 1979 to 1994. We also find that income distribution in Japan worsened from 1994 to 1999, because the

average real income decreased and income inequality increased.

The plan of the paper is as follows. Section 2 surveys the literature on statistical inference for Lorenz

and GL dominance. Section 3 reviews the notion of GL dominance. Section 4 gives a new derivation of the

asymptotic distribution of a vector of sample GL curve ordinates. Section 5 explains our simulation-based

asymptotic tmin test. Section 6 compares alternative tests by Monte Carlo experiments. Section 7 applies

the two tests to the Japanese household income data. Section 8 discusses remaining issues. Appendix A

contains proofs. Appendix B summarizes the data used in application.

2 LITERATURE

Gail and Gastwirth (1978) apply the asymptotic theory of linear functions of order statistics to derive the

asymptotic distribution of a vector of sample GL curve ordinates; see Moore (1968) for an elementary proof

of asymptotic normality of linear functions of order statistics. Beach and Davidson (1983) show that the

asymptotic distribution is “distribution-free” in that it depends only on the group means and variances of

the population. Zheng (1999) derives the same result using Bahadur’s representation of sample quantiles.

Zheng (2002) extends the result to non-simple random samples.

Let θ0 ∈ <k be the difference between two vectors of ordinates from two Lorenz or GL curves. Beach

and Davidson (1983) propose a Wald test for testing

H0 : θ0 = 0 vs. H1 : θ0 6= 0. (1)

This is a test for equality of two curves, not for dominance.

For this two-sided problem, Bishop, Formby, and Thistle (1989) propose simultaneously testing for j =

1, . . . , k,

H0,j : θ0,j = 0 vs. H1,j : θ0,j 6= 0. (2)

The test acceptsH0 : θ0 = 0 if it acceptsH0,1, . . . ,H0,k. Let θ̂n be an estimator of θ0 such that
√
n
(
θ̂n − θ0

)
→d

N(0,Σ). Let mα(k, d) be the (1−α)-quantile of the studentized maximum modulus (SMM) distribution with
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parameter k and d degrees of freedom. If Σ is diagonal, i.e., θ̂n,1, . . . , θ̂n,k are asymptotically independent,

then under H0,

lim
n→∞

Pr

 max
j∈{1,...,k}

∣∣∣√nθ̂n,j∣∣∣
σj

> mα(k,∞)

 = α.

Even if Σ is not diagonal, under H0, we have

lim
n→∞

Pr

 max
j∈{1,...,k}

∣∣∣√nθ̂n,j∣∣∣
σj

> mα(k,∞)

 ≤ α,
as in Stoline and Ury (1979, p. 89). We replace Σ with a consistent estimator in practice. Since Σ is usually

not diagonal, the test tends to be conservative, i.e., the actual size is less than the nominal size. Moreover,

the test may be inefficient because it ignores the covariances.

Gastwirth and Gail (1985) propose multivariate one-sided tests for Lorenz dominance, i.e., they consider

testing

H0 : θ0 = 0 vs. H1 : θ0 ≥ 0. (3)

One of their test statistics (their T2) is the difference between the sums of ordinates of the two sample

Lorenz curves. Bishop, Chakraborti, and Thistle (1989) extend it to a test for GL dominance. The problem

of multivariate one-sided tests in this context, however, is that neither H0 nor H1 covers crossing curves,

which we cannot assume away. If the asymptotic power of a test against some crossing curves is 1, then the

test mistakenly accepts H1 with probability 1 as the sample size goes to infinity.

Aura (2000) essentially considers multivariate one-sided testing problems, and proposes simultaneously

testing for j = 1, . . . , k,

H0,j : θ0,j = 0 vs. H1,j : θ0,j > 0. (4)

The test accepts H0 : θ0 = 0 if it accepts H0,1, . . . ,H0,k. Let tn be a vector of t statistics for testing

these separate hypotheses given a sample of size n. Let tn,max be the maximum component of tn. His test

essentially accepts H1 if tn,max exceeds a simulated critical value. It may happen that tn,min, the minimum

component of tn, is also small, which suggests that some components of θ0 are negative. Hence he actually

proposes a bivariate test statistic (t+, t−), where t+ := max{0, tn,max} and t− := min{0, tn,min}.

Xu (1997) considers testing the null of GL dominance against the alternative of no dominance, i.e.,

H0 : θ0 ≥ 0 vs. H1 : θ0 6≥ 0. (5)
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He applies a distance (Wald) test for multiple inequality restrictions discussed in Kodde and Palm (1986)

and Wolak (1989). Let θ̂n be an unrestricted estimator of θ0 such that
√
n
(
θ̂n − θ0

)
→d N(0,Σ). Let Σ̂n

be a consistent estimator of Σ. Let θ̃n be a minimum distance estimator of θ0 such that

θ̃n := arg min
θ

(
θ̂n − θ

)′
Σ̂−1
n

(
θ̂n − θ

)
s.t. θ ≥ 0.

The distance test statistic is

Dn := n
(
θ̂n − θ̃n

)′
Σ̂−1
n

(
θ̂n − θ̃n

)
.

Kodde and Palm (1986) show that under the least favorable case in H0, i.e., θ0 = 0, Dn has an asymptotic

χ̄2 distribution such that for all c ∈ <,

lim
n→∞

Pr[Dn ≥ c] =
k∑
j=0

pj(Σ) Pr
[
χ2(j) ≥ c

]
,

where pj(Σ) is the probability that j components of θ̃n are 0 given Σ. The result is inconvenient because

the asymptotic distribution depends on Σ; hence Kodde and Palm (1986) give the upper and lower bounds

for the critical values. Dardanoni and Forcina (1999) extend the distance test to comparison of m Lorenz

curves, where m ≥ 2. They consider three hypotheses:

• H0 : L1 = · · · = Lm,

• H1 : L1 ≥ · · · ≥ Lm,

• H2 : no restrictions,

and propose distance tests for testing (i) H0 vs. H2, (ii) H0 vs. H1, (iii) H1 vs. H2, and (iv) H2−H1 vs. H2.

For continuous distributions, GL dominance is equivalent to the second-order stochastic dominance (SSD);

see Foster and Shorrocks (1988) and Yitzhaki and Olkin (1991). Several tests for the SSD exist in the

literature; see Davidson and Duclos (2000) and references there. Since those tests do not consider GL curves

directly, they do not lead to statistical inference for Lorenz curves and Gini coefficients. Moreover, those

tests usually require micro data.

Testing for GL or stochastic dominance is a special case of testing multiple inequality hypotheses, on

which Maasoumi (2001) gives an excellent survey.
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3 GENERALIZED LORENZ DOMINANCE

3.1 Generalized Lorenz Curves

Let X be a positive random variable. Let F : < → [0, 1] be the cumulative distribution function (cdf) of X.

Let for all α ∈ [0, 1], xα be the α-quantile of X defined as xα := inf{x ∈ <+ : F (x) ≥ α}. Let µ := E(X).

Definition 1 The Lorenz curve of X is L : [0, 1]→ [0, 1] such that for all α ∈ [0, 1],

L(α) :=
E([X ≤ xα]X)

µ
. (6)

Definition 2 The generalized Lorenz (GL) curve of X is GL : [0, 1]→ [0, µ] such that for all α ∈ [0, 1],

GL(α) := E([X ≤ xα]X). (7)

Let F1(.) and F2(.) be cdfs. We say that F1(.) GL dominates F2(.) if the GL curve of F1(.) lies above

that of F2(.).

3.2 Income Distributions and Social Welfare

3.2.1 Social welfare functions

Let y ∈ <n be a distribution of income (or consumption, wealth, etc.) among n households in an economy.

Let W : <n → < be a social welfare function (SWF) that depends solely on y.

Definition 3 B ∈ <n×n+ is bistochastic if the components in each row and column add up to 1 respectively.

Definition 4 W (.) is Schur-concave (S-concave) if for all y and for all bistochastic matrices B,

W (By) ≥W (y).

S-concave functions are symmetric, i.e., for all y and for all permutation matrices P , W (Py) = W (y); see

Berge (1963, p. 220). S-concave SWFs satisfy the Pigou–Dalton (P–D) principle of transfers. To be precise,

an SWF is strictly S-concave if and only if it satisfies the P–D principle; see Sen (1997, p. 134). For example,

symmetric quasiconcave functions are S-concave; see Dasgupta, Sen, and Starrett (1973, p. 183).
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3.2.2 Generalized Lorenz dominance and social welfare

Assume that y ≥ 0 and that it is ordered. The GL curve of y is for all α ∈ [0, 1],

GL(α) :=
1
n

[αn]∑
i=1

yi,

where [.] rounds up a real number to an integer. We say that y GL dominates y′ if the GL curve of y lies

above that of y′.

Theorem 1 (Shorrocks (1983)) W (y) ≥ W (y′) for all increasing and S-concave W (.) if and only if y

GL dominates y′.

Suppose that W (.) is invariant to replication of the population. Then the theorem holds even when the

dimensions of y and y′ differ.

4 SAMPLE GENERALIZED LORENZ CURVE ORDINATES

4.1 Sample Generalized Lorenz Curves

Let (X1, . . . , Xn) be a sample of size n. Let F̂n : < → [0, 1] be the empirical cdf given the sample, i.e., for

all x ∈ <,

F̂n(x) :=
1
n

n∑
i=1

[Xi ≤ x].

Let X(1), . . . , X(n) be the order statistics. Let for all α ∈ [0, 1], x̂n,α be the sample α-quantile, i.e.,

x̂n,α := inf
{
x ∈ <+ : F̂n(x) ≥ α

}
= inf

{
x ∈ <+ :

1
n

n∑
i=1

[Xi ≤ x] ≥ α
}

= X([αn]).

Let µ̂n be the sample mean.

Definition 5 The sample GL curve given (X1, . . . , Xn) is ĜLn : [0, 1]→ [0, µ̂n] such that for all α ∈ [0, 1],

ĜLn(α) :=
1
n

n∑
i=1

[Xi ≤ x̂n,α]Xi. (8)
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4.2 Consistency

Gail and Gastwirth (1978) prove pointwise consistency of the sample GL curve in their proof of pointwise

consistency of the sample Lorenz curve.

Theorem 2 Suppose that

1. X1, . . . , Xn are independent and identically distributed (iid),

2. E(|X1|) <∞,

3. F (.) is strictly increasing and C0 at xα.

Then

lim
n→∞

ĜLn(α) = GL(α) a.s.

Proof. See Gail and Gastwirth (1978, p. 788). 2

The first condition holds for simple random sampling (SRS) and probability-proportional-to-size (PPS)

sampling with replacement. Given the third condition, which implies an infinite population, it also holds for

SRS and PPS sampling without replacement, including systematic sampling with randomized order of the

population. It does not hold for stratified sampling, however.

Suppose that there are m strata. Let for h = 1, . . . ,m, wh be the relative size of the hth stratum and

Fh(.) be the cdf of X in the hth stratum. Then for all x ∈ <,

F (x) =
m∑
h=1

whFh(x).

Let for h = 1, . . . ,m,
(
Xh

1 , . . . , X
h
nh

)
be the subsample from the hth stratum of size nh and F̂h,nh

(.) be the

empirical cdf given the subsample. A consistent estimator of F (.) is F̂n(.) such that for all x ∈ <,

F̂n(x) :=
m∑
h=1

whF̂h,nh
(x)

=
m∑
h=1

nh∑
i=1

wh
nh

[
Xh
i ≤ x

]
.

This equals the empirical cdf of the whole sample if for h = 1, . . . ,m, nh = whn (proportional allocation).
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By definition, for all α ∈ [0, 1], the sample α-quantile is

x̂n,α := inf
{
x ∈ <+ : F̂n(x) ≥ α

}
= inf

{
x ∈ <+ :

m∑
h=1

nh∑
i=1

wh
nh

[
Xh
i ≤ x

]
≥ α

}
.

Let for h = 1, . . . ,m, GLh(.) be the GL curve of X in the hth stratum. Then for all α ∈ [0, 1],

GL(α) =
m∑
h=1

whGLh(α).

Let for h = 1, . . . ,m, ĜLh,nh
(.) be the sample GL curve given the subsample from the hth stratum. A

consistent estimator of GL(.) is ĜLn(.) such that for all α ∈ [0, 1],

ĜLn(α) :=
m∑
h=1

whĜLh,nh
(α)

=
m∑
h=1

nh∑
i=1

wh
nh

[
Xh
i ≤ x̂n,α

]
Xh
i .

4.3 Asymptotic Distribution

Let 0 < α1 < · · · < αk = 1. Let for j = 1, . . . , k, xj be the αj-quantile of X. The corresponding GL curve

ordinates of X are for j = 1, . . . , k,

GLj := E([X ≤ xj ]X). (9)

Let for j = 1, . . . , k, x̂n,j be the sample αj-quantile. The corresponding sample GL curve ordinates given

(X1, . . . ,Xn) are for j = 1, . . . , k − 1,

ĜLn,j :=
1
n

n∑
i=1

[Xi ≤ x̂n,j ]Xi, (10)

and

ĜLn,k :=
1
n

n∑
i=1

Xi. (11)

Beach and Davidson (1983) derive the asymptotic joint distribution of sample GL curve ordinates using

the asymptotic theory of linear functions of order statistics, noting that for j = 1, . . . , k,

ĜLn,j =
1
n

[αjn]∑
i=1

X(i).

Since such asymptotic theory is not standard in econometrics, we give an alternative derivation, noting that

a vector of sample GL curve ordinates is a method-of-moments (MM) estimator.
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Let

θ0 :=



x1
...

xk−1

GL1
...

GLk


, θ̂n :=



x̂n,1
...

x̂n,k−1

ĜLn,1
...

ĜLn,k


.

Let Θ ⊂ <2k−1
+ be the parameter space. Given θ ∈ Θ, let for i = 1, . . . , n,

m(Xi; θ) :=



[Xi ≤ x1]− α1

...
[Xi ≤ xk−1]− αk−1

[Xi ≤ x1]Xi −GL1

...
[Xi ≤ xk−1]Xi −GLk−1

Xi −GLk


. (12)

Assume that X1, . . . ,Xn are iid. Let m0 : Θ→ <2k−1 be such that for all θ ∈ Θ,

m0(θ) := E(m(X1; θ)). (13)

Then we have a moment restriction such that

m0(θ0) = 0. (14)

Let m̄n(.) be the sample analog of m0(.), i.e., for all θ ∈ Θ,

m̄n(θ) :=
1
n

n∑
i=1

m(Xi; θ). (15)

Note that for j = 1, . . . , k − 1,

1
n

n∑
i=1

[Xi ≤ x̂n,j ] =
[αjn]
n

= αj +
[αjn]− αjn

n
.

Hence

m̄n

(
θ̂n

)
= O

(
n−1

)
, (16)

i.e., θ̂n is an MM estimator of θ0. Theorem 2 essentially gives a sufficient condition for θ̂n to be consistent

for θ0.

12



Although m(.; .) is not differentiable with respect to θ, we can apply empirical process methods to derive

the asymptotic distribution of θ̂n; see Andrews (1994). Let νn(.) be a (2k − 1)-variate empirical process on

Θ given (X1, . . . , Xn) such that for all θ ∈ Θ,

νn(θ) :=
1√
n

n∑
i=1

(m(Xi; θ)− E(m(Xi; θ))).

Definition 6 {νn(.)}∞n=1 is stochastically equicontinuous (uniformly on Θ) if for all ε > 0,

lim
δ↓0

lim sup
n→∞

Pr∗
[

sup
θ,θ′∈Θ,d(θ,θ′)<δ

‖νn(θ)− νn(θ′)‖ > ε

]
= 0,

where Pr∗[.] is the outer probability, d(., .) is a metric on Θ, and ‖.‖ is a norm on <2k−1.

Note that a sequence of multivariate empirical processes is stochastically equicontinuous if the notion

applies to each component; see Andrews (1994, p. 2267).

Theorem 3 Suppose that

1. X1, . . . , Xn are iid,

2. E
(
|X1|2

)
<∞,

3. F (.) is strictly increasing and C1 on its support,

4. {νn(.)}∞n=1 is stochastically equicontinuous.

Then

√
n
(
θ̂n − θ

)
→d N

(
0, J−1V J−1′

)
,

where

J := m′0(θ0),

V := var(m(X1; θ0)).

Proof. See Appendix A. 2

In our case, it turns out that the first two conditions are sufficient for stochastic equicontinuity of each

component of {νn(.)}∞n=1; hence the last condition is unnecessary.

13



Theorem 4 Suppose that

1. X1, . . . , Xn are iid,

2. E
(
|X1|2

)
<∞.

Then {νn(.)}∞n=1 is stochastically equicontinuous.

Proof. See Appendix A. 2

Since the sample GL curve ordinates are the last k components of θ̂n, it is now straightforward to obtain

their asymptotic joint distribution. Let

GL :=

GL1
...

GLk

 , ĜLn :=

 ĜLn,1
...

ĜLn,k

 .

Theorem 5 Suppose that

1. X1, . . . , Xn are iid,

2. E
(
|X1|2

)
<∞,

3. F (.) is strictly increasing and C1 on its support.

Then

√
n
(

ĜLn −GL
)
→d N(0,Σ),

where for i, j = 1, . . . , k such that i ≤ j,

σi,j := xiαi(1− αj)xj − xi(GLi − αiGLj)− (GLi −GLiαj)xj

+E
(
[X1 ≤ xi]X2

1

)
−GLiGLj . (17)

Proof. See Appendix A. 2

Our result clarifies the effect of two-step estimation involved in the sample GL curve. The last two terms

equal cov([X1 ≤ xi]X1, [X1 ≤ xj ]X1), which would have resulted if we knew the true quantiles. The first

three terms capture the effect of using the sample quantiles instead of the true ones.

Compare our result with the corresponding result in Beach and Davidson (1983, Theorem 1). In our

notation, they obtain for i, j = 1, . . . , k such that i ≤ j,

σi,j := αi[var(X|X ≤ xi) + (1− αj)(xi − µi)(xj − µj) + (xi − µi)(µj − µi)], (18)

14



where µi := E(X|X ≤ xi). It is tedious but straightforward to show that the two are equivalent.

Again, Theorem 5 does not hold for stratified samples. Suppose that there are m strata. Let for

h = 1, . . . ,m, wh be the relative size of the hth stratum and GLh be a vector of GL curve ordinates of the

hth stratum. Then

GL =
m∑
h=1

whGLh.

Let for h = 1, . . . ,m, GLh,nh
be a vector of sample GL curve ordinates given the subsample from the hth

stratum of size nh. A consistent estimator of GL is

ĜLn :=
m∑
h=1

whĜLh,nh
.

Suppose that Theorem 5 applies to each subsample, i.e., for h = 1, . . . ,m,

√
nh

(
ĜLh,nh

−GLh
)
→d N(0,Σh).

Assume that limn→∞ nh/n = th. Then for h = 1, . . . ,m,

√
n
(

ĜLh,nh
−GLh

)
→d N

(
0,

Σh
th

)
.

Assume that ĜL1,n1 , . . . , ĜLm,nm are independent. Then

√
n
(

ĜLn −GL
)
→d N

(
0,

m∑
h=1

w2
hΣh
th

)
.

The result is the same as that in Zheng (2002, p. 1238), who also derives results for cluster samples and

multistage samples.

4.4 Covariance Matrix Estimation

We can consistently estimate Σ by replacing the parameters associated with F (.) with those associated with

F̂n(.). Let Σ̂n be such an estimator. Then for i, j = 1, . . . , k such that i ≤ j,

σ̂n,i,j := x̂n,iα̂i(1− α̂j)x̂n,j

−x̂n,i
(

ĜLn,i − α̂iĜLn,j
)
−
(

ĜLn,i − ĜLn,iα̂j
)
x̂n,j

+Ên
(
[X1 ≤ xi]X2

1

)
− ĜLn,iĜLn,j . (19)
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5 TESTING FOR GENERALIZED LORENZ DOMINANCE

5.1 Multivariate One-Sided Tests and Multivariate Inequality Tests

Let F1(.) and F2(.) be cdfs. Let GL1 and GL2 be vectors of GL curve ordinates associated with F1(.) and

F2(.) respectively. Let θ0 := GL1 − GL2. Then θ0 ≥ 0 if F1(.) GL dominates F2(.). Goldberger (1992)

distinguishes the following two formulations for testing multiple inequality hypotheses.

Definition 7 A multivariate one-sided testing problem is

H0 : θ0 = 0 vs. H1 : θ0 ≥ 0.

Definition 8 A multivariate inequality testing problem is

H0 : θ0 ≥ 0 vs. H1 : θ0 6≥ 0.

In general, the first formulation is better for asserting θ0 ≥ 0. A drawback of this formulation, however,

is that neither H0 nor H1 covers crossing GL curves. This is a serious drawback in our context, because

it is quite possible that two GL curves cross and hence the two distributions are incomparable. Thus we

choose the second formulation. Note that now we assert GL dominance by accepting H0. Such a conclusion

is weak, because the power of the test is not under our direct control.

5.2 θmin Test

Let ĜL1,n1 and ĜL2,n2 be vectors of sample GL curve ordinates of two independent random samples of sizes

n1 and n2 from F1(.) and F2(.) respectively. By Theorem 5, for i = 1, 2,

√
ni

(
ĜLi,ni −GLi

)
→d N(0,Σi).

Let n := n1 + n2. Assume that for i = 1, 2, limn→∞ ni/n = ti. Then for i = 1, 2,

√
n
(

ĜLi,ni −GLi
)
→d N

(
0,

Σi
ti

)
.

Let θ̂n := ĜL1,n1 − ĜL2,n2 . Since ĜL1,n1 and ĜL2,n2 are independent,

√
n
(
θ̂n − θ0

)
→d N

(
0,

Σ1

t1
+

Σ2

t2

)
,
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or

θ̂n ∼a N
(
θ0,

Σ1

n1
+

Σ2

n2

)
. (20)

Thus, given Σ1 and Σ2, we know the asymptotic distribution of θ̂n under the least favorable case in H0, i.e.,

θ0 = 0.

Let θmin be the minimum component of θ0. Then we can write the multivariate inequality testing problem

as

H0 : θmin ≥ 0 vs. H1 : θmin < 0.

Hence a natural test statistic is θ̂n,min, the minimum component of θ̂n.

Let F (.) be the cdf of the minimum component of X ∼ N(0,Σ1/n1 + Σ2/n2). Then under the least

favorable case in H0, i.e., θ0 = 0,

θ̂n,min ∼a F (.). (21)

It is difficult to derive F (.) analytically. Given Σ1 and Σ2, however, we can draw from N(0,Σ1/n1 + Σ2/n2)

and simulate F (.); thus we can evaluate the asymptotic p-value. In practice, we replace Σ1 and Σ2 with

their consistent estimators. We call this a θmin test.

5.3 tmin Test

Alternatively, we can simultaneously test for j = 1, . . . , k,

H0,j : θ0,j ≥ 0 vs. H1,j : θ0,j < 0.

This testing problem can arise from a multivariate one-sided testing problem

H0 : θ0 = 0 vs. H1 : θ0 ≤ 0.

where we accept H0 : θ0 = 0 if we accept H0,1, . . . , H0,k, as well as from a multivariate inequality testing

problem

H0 : θ0 ≥ 0 vs. H1 : θ0 6≥ 0,

where we accept H0 : θ0 ≥ 0 if we accept H0,1, . . . , H0,k.
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A natural test for this simultaneous testing problem is a simulation-based simultaneous asymptotic one-

sided t test. Let

tn := diag
(

Σ̂n
)−1/2√

nθ̂n. (22)

Let tn,min be the minimum component of tn. Then a simultaneous one-sided t test accepts H0 if tn,min is

above a critical value. Again, it is difficult to derive the asymptotic distribution of tn,min analytically; hence

we evaluate the asymptotic p-value by simulation. We call this a tmin test.

Aura (2000) essentially proposes the same procedure for multivariate one-sided testing problems. Note

that if tn,min < c, where c is a simulated critical value, then we accept H1 : θ0 ≤ 0 for multivariate one-sided

testing problems, while we accept only H1 : θ0 6≥ 0 for multivariate inequality testing problems.

5.4 Asymptotic Properties

The two proposed tests both asymptotically have the correct sizes and are consistent. We state the results

as theorems.

Theorem 6 For any significance level α, the asymptotic sizes of the θmin and tmin tests are α.

Proof. See Appendix A. 2

Theorem 7 Both θmin and tmin tests are consistent.

Proof. See Appendix A. 2

6 MONTE CARLO EXPERIMENTS

6.1 Design of Experiments

We perform Monte Carlo experiments to compare our tests with the χ̄2 test. To see the power of the tests

against crossing curves, we test Lorenz (not GL) dominance of one Singh–Maddala (S–M) distribution over

another. Let F1(.) and F2(.) be the cdfs of S–M distributions, i.e., for i = 1, 2, for all x ≥ 0,

Fi(x) := 1− 1
[1 + (x/bi)ai ]qi

.

Wilfling and Krämer (1993) show that1

1We say that F1(.) Lorenz dominates F2(.) if the Lorenz curve of F1(.) lies above that of F2(.). Wilfling and Krämer (1993,
p. 53) define it in the opposite way, which is unconventional.
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• F1(.) Lorenz dominates F2(.) if and only if a1 ≥ a2 and a1q1 ≥ a2q2,

• F2(.) Lorenz dominates F1(.) if and only if a1 ≤ a2 and a1q1 ≤ a2q2.

Hence two Lorenz curves cross otherwise.

Let L1 and L2 be vectors of Lorenz curve ordinates of F1(.) and F2(.) respectively. Consider testing

H0 : L1 ≥ L2 vs. H1 : L1 6≥ L2.

Following Dardanoni and Forcina (1999), we fix (a2, b2, q2) := (1.697, 1, 8.368) and consider the following

seven cases:

• Case 1: (a1, b1, q1) := (1.697, 1, 8.368),

• Case 2: (a1, b1, q1) := (1.697 + .07, 1, 8.368),

• Case 3: (a1, b1, q1) := (1.697 + .14, 1, 8.368),

• Case 4: (a1, b1, q1) := (1.697− .07, 1, 8.368),

• Case 5: (a1, b1, q1) := (1.697− .14, 1, 8.368),

• Case 6: (a1, b1, q1) := (1.817, 1, 4.1996),

• Case 7: (a1, b1, q1) := (2.057, 1, 2.1397).

In addition, we switch L1 and L2 in Case 6 and 7:

• Case 8: (a1, b1, q1) := (1.697, 1, 8.368), (a2, b2, q2) := (1.817, 1, 4.1996),

• Case 9: (a1, b1, q1) := (1.697, 1, 8.368), (a1, b1, q1) := (2.057, 1, 2.1397).

We have L1 = L2 in Case 1, L1 ≥ L2 in Case 2 and 3, L1 ≤ L2 in Case 4 and 5, and crossing Lorenz curves

in Case 6–9.

Given the asymptotic distribution of a vector of sample GL curve ordinates, we can apply the delta

method to obtain the asymptotic distribution of the corresponding vector of sample Lorenz curve ordinates.
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Let GL ∈ <k be a vector of GL curve ordinates and L be the corresponding vector of Lorenz curve ordinates,

i.e.,

L =


GL1
GLk

...
GLk−1
GLk

 .

Let ĜLn be a vector of sample GL curve ordinates such that
√
n
(

ĜLn −GL
)
→d N(0,Σ) and L̂n be the

corresponding vector of sample Lorenz curve ordinates. By the delta method,

√
n
(
L̂n − L

)
→d N(0, JΣJ ′),

where

J :=


1

GLk
0 −GL1

GL2
k

. . .
...

0 1
GLk

−GLk−1

GL2
k

 .
In the experiments, we set k = 10 and try three sample sizes: 1,000, 2,000, and 4,000. The simulated

size and power of the tests are the relative frequencies of asymptotic p-values less than the significance level

(fixed at .05) in 10,000 Monte Carlo replications. To evaluate the asymptotic p-value in each replication,2 we

simulate the asymptotic distribution of the test statistic under the least favorable case in H0 based on 10,000

draws from the (k − 1)-variate normal distribution with mean 0 and variance-covariance matrix ĴnΣ̂nĴ ′n

(the sample analog of JΣJ ′) or the associated correlation coefficient matrix. For the θmin and tmin tests,

we simulate the distribution of the minimum component from these draws. For the χ̄2 test, we simulate

the weights to mix χ2 distributions with different degrees of freedom from these draws. We use Ox 3.20 by

Doornik (2001) for computation.

6.2 Results

Table 1 summarizes the results of the experiments. We confirm that

• the three tests asymptotically have the correct size (Case 1),

• Case 1 is the least favorable case under H0 (Case 2 and 3),

• the three tests are consistent (Case 4–9).

More interestingly, we find that
2For the χ̄2 test, we do not have to evaluate the asymptotic p-value if the test statistic exceeds the bounds given by Kodde

and Palm (1986).
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Table 1: Simulated Size and Power of the Tests (Case 1–9)

Test n (1) (2) (3) (4) (5) (6) (7) (8) (9)
θmin 1,000 .050 .004 .000 .285 .716 .113 .527 .037 .039

2,000 .050 .001 .000 .465 .932 .173 .824 .040 .069
4,000 .047 .000 .000 .701 .998 .290 .983 .044 .172

tmin 1,000 .050 .004 .000 .286 .733 .083 .408 .111 .474
2,000 .051 .001 .000 .465 .939 .131 .747 .177 .767
4,000 .042 .000 .000 .707 .999 .237 .969 .293 .969

χ̄2 1,000 .050 .005 .000 .291 .739 .079 .396 .111 .457
2,000 .050 .001 .000 .478 .948 .119 .727 .160 .752
4,000 .049 .000 .000 .734 .999 .222 .966 .273 .962

Note: The numbers are rejection rates in 10,000 Monte Carlo replications.

• the power of the θmin test changes drastically if we switch the crossing curves (Case 6–9),

• Compared with the χ̄2 test, the tmin test is less powerful against non-crossing curves (Case 4 and 5),

but more powerful against crossing curves (Case 6–9).

Thus we conclude that the tmin test is preferable to the θmin test, and that the tmin and χ̄2 tests are

complementary. The latter coincides with the analytical result by Goldberger (1992), who considers testing

inequality restrictions on the mean vector of a bivariate normal distribution.

7 APPLICATION

7.1 Income Distributions in Japan

According to the National Survey of Family Income and Expenditure, (before-tax) income inequality in Japan

measured by the sample Lorenz curve worsened, while real income distribution measured by the sample GL

curve improved from 1979 to 1999 (Table 2 and 3). This means that increase in the average real income

was sufficient to compensate increase in inequality from 1979 to 1999. (Real income distribution actually

worsened from 1994 to 1999 due to decrease in the average real income.) The argument based only on point

estimates, however, is incomplete.

Table 2 and 3 also report the asymptotic standard errors calculated from our formula. Although micro

data of the National Survey of Family Income and Expenditure are not publicly available, the released

grouped data contain sufficient information for our purpose. For each income decile group, they report the

sample mean and the sample coefficient of variation of the annual incomes, from which we can recover the
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Table 2: Sample Lorenz Curve Ordinates of the Japanese Household Annual Incomes

Decile group 1979 1984 1989 1994 1999
1 0.04 0.04 0.04 0.03 0.03

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
2 0.09 0.09 0.09 0.08 0.08

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
3 0.16 0.16 0.15 0.15 0.14

(0.0005) (0.0005) (0.0005) (0.0005) (0.0004)
4 0.24 0.23 0.23 0.22 0.21

(0.0006) (0.0006) (0.0006) (0.0006) (0.0005)
5 0.32 0.31 0.31 0.30 0.29

(0.0007) (0.0007) (0.0008) (0.0007) (0.0006)
6 0.42 0.41 0.40 0.39 0.39

(0.0008) (0.0009) (0.0010) (0.0009) (0.0007)
7 0.52 0.51 0.51 0.50 0.49

(0.0010) (0.0010) (0.0011) (0.0010) (0.0008)
8 0.64 0.64 0.63 0.62 0.62

(0.0011) (0.0011) (0.0013) (0.0012) (0.0008)
9 0.79 0.78 0.78 0.77 0.77

(0.0011) (0.0011) (0.0014) (0.0013) (0.0007)
10 1.00 1.00 1.00 1.00 1.00

Note: Numbers in parentheses are asymptotic standard errors.
Source: The authors’ calculation from the National Survey of Family Income and Expenditure.

Table 3: Sample GL Curve Ordinates of the Japanese Household Annual Real Incomes

Decile group 1979 1984 1989 1994 1999
1 230 230 262 260 240

(1.3) (1.4) (1.5) (1.5) (1.4)
2 577 581 652 661 610

(2.3) (2.4) (2.6) (2.7) (2.5)
3 978 1,001 1,120 1,152 1,059

(3.1) (3.5) (3.8) (3.9) (3.6)
4 1,451 1,479 1,652 1,710 1,588

(4.1) (4.4) (4.8) (5.2) (4.9)
5 1,968 2,017 2,267 2,365 2,205

(5.0) (5.5) (6.1) (6.6) (6.3)
6 2,543 2,616 2,950 3,097 2,909

(6.0) (6.6) (7.4) (8.2) (7.9)
7 3,180 3,298 3,738 3,943 3,713

(7.2) (7.9) (9.0) (9.8) (9.6)
8 3,935 4,089 4,638 4,924 4,666

(8.6) (9.5) (10.7) (11.7) (11.4)
9 4,807 5,034 5,706 6,096 5,790

(10.5) (11.5) (12.9) (14.1) (13.9)
10 6,102 6,419 7,329 7,885 7,507

(15.9) (17.2) (21.3) (22.0) (18.7)

Note: Thousand 2000 yen deflated by the Consumer Price Index (CPI). Numbers in parentheses are asymp-
totic standard errors.
Source: The authors’ calculation from the National Survey of Family Income and Expenditure.
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Table 4: Lorenz Dominance of Income Distributions in Japan

tmin test Asymptotic χ̄2 test Asymptotic
H0 statistic p-value statistic p-value

L1979 ≤ L1984 –8.56 .00 75.37 .00
L1979 ≤ L1989 –13.98 .00 195.33 .00
L1979 ≤ L1994 –24.40 .00 598.26 .00
L1979 ≤ L1999 –32.67 .00 1067.40 .00
L1984 ≤ L1989 –5.64 .00 31.79 .00
L1984 ≤ L1994 –15.73 .00 247.47 .00
L1984 ≤ L1999 –23.37 .00 553.77 .00
L1989 ≤ L1994 –10.84 .00 117.52 .00
L1989 ≤ L1999 –18.17 .00 330.20 .00
L1994 ≤ L1999 –7.99 .00 63.83 .00
L1979 ≥ L1984 2.19 1.00 0.00 1.00
L1979 ≥ L1989 5.05 1.00 0.00 1.00
L1979 ≥ L1994 8.79 1.00 0.00 1.00
L1979 ≥ L1999 12.52 1.00 0.00 1.00
L1984 ≥ L1989 0.24 .81 0.00 1.00
L1984 ≥ L1994 6.59 1.00 0.00 1.00
L1984 ≥ L1999 9.60 1.00 0.00 1.00
L1989 ≥ L1994 2.89 1.00 0.00 1.00
L1989 ≥ L1999 4.52 1.00 0.00 1.00
L1994 ≥ L1999 1.21 .98 0.00 1.00

Note: The asymptotic p-values are based on 10,000 random draws from the asymptotic distribution of each
test statistic under the least favorable case in H0.

sample second moment. Thus we can estimate the asymptotic variance–covariance matrix of the sample GL

curve ordinates. See Appendix B for the grouped data.

With about 50,000 observations, the estimates are very accurate. It is not yet obvious, however, whether

the dominance relations are statistically significant. We should formally test, for example,

H0 : GL1999 ≥ GL1979 vs. H1 : GL1999 6≥ GL1979,

where GL1979 and GL1999 are the vectors of GL curve ordinates in 1979 and 1999 respectively. We apply

the tmin and χ̄2 tests to this problem.

7.2 Testing Results

Table 4 reports the results of testing Lorenz dominance of income distributions in Japan from 1979 to 1999.

For any reasonable significance level, both the tmin and χ̄2 tests reject the null hypotheses that the Lorenz

curve shifted upward, and accept the null hypotheses that it shifted downward. Thus we can statistically

conclude that income inequality in Japan worsened from 1979 to 1999.
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Table 5: GL Dominance of Real Income Distributions in Japan

tmin test Asymptotic χ̄2 test Asymptotic
H0 statistic p-value statistic p-value

GL1979 ≤ GL1984 –0.06 .75 0.003 .74
GL1979 ≤ GL1989 16.16 1.00 0.00 1.00
GL1979 ≤ GL1994 15.32 1.00 0.00 1.00
GL1979 ≤ GL1999 5.51 1.00 0.00 1.00
GL1984 ≤ GL1989 15.89 1.00 0.00 1.00
GL1984 ≤ GL1994 15.07 1.00 0.00 1.00
GL1984 ≤ GL1999 5.44 1.00 0.00 1.00
GL1989 ≤ GL1994 –0.69 .49 0.47 .50
GL1989 ≤ GL1999 –11.72 .00 141.13 .00
GL1994 ≤ GL1999 –17.43 .00 326.96 .00
GL1979 ≥ GL1984 –14.57 .00 217.91 .00
GL1979 ≥ GL1989 –54.09 .00 2950.10 .00
GL1979 ≥ GL1994 –73.31 .00 5461.80 .00
GL1979 ≥ GL1999 –57.29 .00 3420.50 .00
GL1984 ≥ GL1989 –38.93 .00 1534.50 .00
GL1984 ≥ GL1994 –58.37 .00 3469.40 .00
GL1984 ≥ GL1999 –42.87 .00 1908.80 .00
GL1989 ≥ GL1994 –20.41 .00 426.90 .00
GL1989 ≥ GL1999 –6.29 .00 39.51 .00
GL1994 ≥ GL1999 9.93 1.00 0.00 1.00

Note: See the note to Table 4.

Table 5 reports the results of testing GL dominance of real income distributions in Japan from 1979 to

1999. From 1979 to 1994, for any reasonable significance level, both tests accept the null hypotheses that the

GL curve shifted upward, and reject the null hypotheses that it shifted downward. Thus we can statistically

conclude that real income distribution in Japan improved from 1979 to 1994.

We can also statistically conclude that real income distribution in Japan worsened from 1994 to 1999.

The distribution in 1999 is still better than that in 1984. Both tests reject GL dominance in both directions

between 1989 and 1999. Thus we can statistically conclude that the GL curves in 1989 and 1999 cross, i.e.,

the two distributions cannot be ordered by GL dominance.

Notice that the tmin test statistics for testing GL dominance between 1979 and 1984 are negative in both

directions, i.e., the sample GL curves in 1979 and 1984 cross; hence the two distribution seems incomparable.

Interestingly, however, both the tmin and χ̄2 tests clearly show GL dominance. The same is true between

1989 and 1994. This means that although GL dominance exists, the sample GL curves cross because of

sampling errors.
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8 DISCUSSION

This paper contributes to simplification of statistical inference for Lorenz and GL dominance in two ways.

First, we give an intuitive derivation of the asymptotic distribution of a vector of sample GL curve ordinates,

interpreting it as an MM estimator. Second, we propose a simple simulation-based simultaneous asymptotic

one-sided t test for Lorenz and GL dominance (and for multiple inequality restrictions in general), which is

consistent and asymptotically has the correct size. The results of our Monte Carlo experiments show that

our tmin test tends to be more powerful against crossing curves, while the χ̄2 test, proposed by Xu (1997)

and Dardanoni and Forcina (1999), tends to be more powerful against other alternative hypotheses. Thus

the two tests are complementary.

Our procedure has applications other than comparing income or wealth distributions. Since GL dom-

inance is equivalent to the SSD, a possible application is to test the SSD of the distribution of one asset

return over that of another. Since financial data typically have serial dependence, some modifications will

be necessary. This may be an interesting direction for future research.
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A APPENDIX 1: PROOFS

A.1 Theorem 3

Lemma 1 Suppose that

1. plimn→∞ θ̂n = θ0,

2. {νn(.)}∞n=1 is stochastically equicontinuous.

Then

plim
n→∞

(
νn

(
θ̂n

)
− νn(θ0)

)
= 0.

Proof. See Andrews (1994, pp. 2256–2257). 2
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Proof of Theorem 3 Since F (.) is C1 on its support, m0(.) is C1 on Θ. Applying the mean value theorem

to each component of m0(.) at θ = θ̂n,

m0(θ0) = m0

(
θ̂n

)
+ Jn

(
θ0 − θ̂n

)
,

where

Jn :=

 m′0,1
(
θ∗n,1

)
...

m′0,2k−1

(
θ∗n,2k−1

)
 ,

and θ∗n,1, . . . , θ
∗
n,2k−1 are the mean values. Since m0(θ0) = 0 and Jn is nonsingular,

√
n
(
θ̂n − θ0

)
= J−1

n

√
nm0

(
θ̂n

)
.

Since m′0(.) is C0 and θ̂n is consistent for θ0,

plim
n→∞

Jn = J,

where J is nonsingular. By the previous lemma,

−
√
nm0

(
θ̂n

)
=
√
nm̄n

(
θ̂n

)
−
√
nm0

(
θ̂n

)
−
√
nm̄n

(
θ̂n

)
=

1√
n

n∑
i=1

(
m
(
Xi; θ̂n

)
− E(m

(
Xi; θ̂n

))
+ o(1)

= νn

(
θ̂n

)
+ o(1)

= νn(θ0) +
(
νn

(
θ̂n

)
− νn(θ0)

)
+ o(1)

=
1√
n

n∑
i=1

(m(Xi; θ0)− E(m(Xi; θ0))) + op(1).

By the Lindeberg–Lévy central limit theorem,

1√
n

n∑
i=1

(m(Xi; θ0)− E(m(Xi; θ0)))→d N(0, V ).

The result follows by Slutsky’s lemma and the continuous mapping theorem. 2

A.2 Theorem 4

Let Q(.) be a probability measure on (<,B(<)). Let F ⊂ L2(Q). The ε-covering number of F with respect

to the L2(Q)-norm is the smallest N ≥ 1 such that there exist f1, . . . , fN ∈ F such that for all f ∈ F ,

min
i∈{1,...,N}

‖f − fi‖L2(Q) < ε.
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Let N2(ε;F , Q(.)) be the ε-covering number of F with respect to the L2(Q)-norm. The ε-entropy of F with

respect to the L2(Q)-norm is

H2(ε;F , Q(.)) := lnN2(ε;F , Q(.)).

An envelope for F is F such that for all f ∈ F , |f | ≤ F . Let Q be a set of probability measures on (<,B(<)).

The uniform ε-entropy of F on Q with respect to F in L2 is

sup
Q(.)∈Q

H2

(
‖F‖L2(Q)ε;F , Q(.)

)
.

See van der Vaart (1998, p. 274) on these notions.

Definition 9 F satisfies the uniform entropy condition with respect to F if∫ 1

0

√
sup

Q(.)∈Q
H2

(
‖F‖L2(Q)ε;F , Q(.)

)
dε <∞,

where Q is the set of all discrete distributions on < that take positive probabilities only on finite subsets of

<.

Lemma 2 Suppose that

1. X1, . . . , Xn are iid,

2. F := {f(X1; θ) : θ ∈ Θ} satisfies the uniform entropy condition with respect to F ,

3. E
(
F 2
)
<∞.

Then the corresponding sequence of empirical processes on Θ given (X1, . . . ,Xn) is stochastically equicon-

tinuous.

Proof. This is essentially Theorem 1 in Andrews (1994), which relies on Theorem 10.6 in Pollard (1990);

see also van der Vaart and Wellner (1996, Theorem 2.5.2). We need only E
(
F 2
)
<∞ instead of E

(
F 2+δ

)
<

∞ for some δ > 0, because it suffices for the Lindeberg condition when X1, . . . , Xn are iid; see Davidson

(1994, p. 371). 2

Verifying the uniform entropy condition looks awkward; hence Andrews (1994) lists various classes of

random functions that satisfy the condition. The following class is relevant for our case. Let X be a

k-variate random vector.
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Definition 10 F is a type 1 class if

1. F := {X ′θ : θ ∈ Θ ⊂ <k} or

2. F := {f(X ′θ) : θ ∈ Θ ⊂ <k}, where f(.) is of bounded variation.

Proof of Theorem 4 Let M := {m(X1; θ) : θ ∈ Θ}. By the previous lemma, it suffices to show that M

satisfies the uniform entropy condition with an envelope that is square integrable.

Let W := (X1,−1, 0, . . .)′. Let Θ∗ := {1} ×Θ. Let for all θ∗ ∈ Θ∗,

f(W ; θ∗) := [W ′θ∗ ≤ 0]

=
[
(X1 −1 0 . . . )

(
1
θ

)
≤ 0
]

= [X1 ≤ x1].

Since the indicator function is of bounded variation, F := {f(W ; θ∗) : θ∗ ∈ Θ∗} is a type 1 class. By Theorem

2 in Andrews (1994), it satisfies the uniform entropy condition. An obvious envelope for F is F := 1. This

argument applies to the first k − 1 components of m(X1; .).

We have for all θ∗ ∈ Θ,

f(W ; θ∗)X1 = [X1 ≤ x1]X1.

Let G := {X1}. A singleton set trivially satisfies the uniform entropy condition. Since F and G satisfy the

uniform entropy condition, FG satisfies the uniform entropy condition by Theorem 3 in Andrews (1994). An

obvious envelope for FG is F := |X1|. This argument applies to the last k components of m(X1; .).

Thus M satisfies the uniform entropy condition with an envelope

M :=



1
...
1
|X1|

...
|X1|


,

which is square integrable. Hence {νn(.)}∞n=1 is stochastically equicontinuous. 2
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A.3 Theorem 5

Proof of Theorem 5 We can write the result of Theorem 3 as

√
n
(
θ̂n − θ

)
→d N

(
0,
[
J11 O(k−1)×k
J21 −Ik

]−1 [
V11 V12

V21 V22

] [
J11 O(k−1)×k
J21 −Ik

]−1′
)
,

where

J11 :=

 f(x1) 0
. . .

0 f(xk−1)

 ,

J21 :=


x1f(x1) 0

. . .
0 xk−1f(xk−1)
0 . . . 0

 ,

V11 :=

 α1(1− α1) . . . α1(1− αk−1)
...

. . .
...

α1(1− αk−1) . . . αk−1(1− αk−1)

 ,
V12 :=

 GL1 − α1GL1 . . . GL1 − α1GLk
...

...
GL1 − αk−1GL1 . . . GLk−1 − αk−1GLk

 ,
V21 :=

GL1 −GL1α1 . . . GL1 −GL1αk−1

...
...

GL1 −GLkα1 . . . GLk−1 −GLkαk−1

 ,
V22 :=

 E
(
[X1 ≤ x1]X2

1

)
−GL2

1 . . . E
(
[X1 ≤ x1]X2

1

)
−GL1GLk

...
. . .

...
E
(
[X1 ≤ x1]X2

1

)
−GLkGL1 . . . E

(
[X1 ≤ xk]X2

1

)
−GL2

k

 .
Notice that [

J11 O(k−1)×k
J21 −Ik

]−1

=
[

J−1
11 O(k−1)×k

J21J
−1
11 −Ik

]
,

where

J21J
−1
11 =


x1 0

. . .
0 xk−1

0 . . . 0

 .
Thus

Σ = J21J
−1
11 V11J

−1
11 J

′
21 − J21J

−1
11 V12 − V21J

−1
11 J

′
21 + V22

= A−B − C + V22,

where

A := J21J
−1
11 V11J

−1
11 J

′
21
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=


x1 0

. . .
0 xk−1

0 . . . 0


 α1(1− α1) . . . α1(1− αk−1)

...
. . .

...
α1(1− αk−1) . . . αk−1(1− αk−1)


x1 0 0

. . .
...

0 xk−1 0



=


x1α1(1− α1)x1 . . . x1α1(1− αk−1)xk−1 0

...
. . .

...
...

xk−1α1(1− αk−1)x1 . . . xk−1αk−1(1− αk−1)xk−1 0
0 . . . 0 0


B := J21J

−1
11 V12

=


x1 0

. . .
0 xk−1

0 . . . 0


 GL1 − α1GL1 . . . GL1 − α1GLk

...
...

GL1 − αk−1GL1 . . . GLk−1 − αk−1GLk



=


x1(GL1 − α1GL1) . . . x1(GL1 − α1GLk)

...
...

xk−1(GL1 − αk−1GL1) . . . xk−1(GLk−1 − αk−1GLk)
0 . . . 0

 ,
C := V21J

−1
11 J21

=

GL1 −GL1α1 . . . GL1 −GL1αk−1

...
...

GL1 −GLkα1 . . . GLk−1 −GLkαk−1


x1 0 0

. . .
...

0 xk−1 0



=

 (GL1 −GL1α1)x1 . . . (GL1 −GL1αk−1)x1 0
...

...
...

(GL1 −GLkα1)x1 . . . (GLk−1 −GLk−1αk−1)xk−1 0

 .
2

A.4 Theorem 6

Proof of Theorem 6

1. (θmin test) Let for all α ∈ [0, 1], cα be such that

lim
n→∞

Pr
[√

nθ̂n,min ≤ cα|θ0 = 0
]

= α.

We want to show that for all α ∈ [0, 1],

lim
n→∞

sup
θ≥0

Pr
[√

nθ̂n,min ≤ cα|θ0 = θ
]

= α.

Let 1k := (1, . . . , 1)′. Since θ̂n is asymptotically normal, for all α ∈ [0, 1], for all θ ≥ 0,

lim
n→∞

Pr
[√

nθ̂n > cα1k|θ0 = θ
]
≥ lim
n→∞

Pr
[√

nθ̂n > cα1k|θ0 = 0
]
,
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or

lim
n→∞

Pr
[√

nθ̂n,min > cα|θ0 = θ
]
≥ lim
n→∞

Pr
[√

nθ̂n,min > cα|θ0 = 0
]
.

Hence

lim
n→∞

Pr
[√

nθ̂n,min ≤ cα|θ0 = θ
]

= 1− lim
n→∞

Pr
[√

nθ̂n,min > cα|θ0 = θ
]

≤ 1− lim
n→∞

Pr
[√

nθ̂n,min > cα|θ0 = 0
]

= lim
n→∞

Pr
[√

nθ̂n,min ≤ cα|θ0 = 0
]

= α.

2. (tmin test) Repeat the same argument for tn,min.

2

A.5 Theorem 7

Proof of Theorem 7

1. (θmin test) Let for all α ∈ [0, 1], cα be such that

lim
n→∞

Pr
[√

nθ̂n,min ≤ cα|θ0 = 0
]

= α.

We want to show that for all θ 6≥ 0,

lim
n→∞

Pr
[√

nθ̂n,min ≤ cα|θ0 = θ
]

= 1.

Assume without loss of generality that θmin = θ0,1 < 0. Then

plim
n→∞

√
nθ̂n,min = plim

n→∞
min

{√
nθ̂n,1, . . . ,

√
nθ̂n,k

}
≤ plim

n→∞

√
nθ̂n,1

= plim
n→∞

√
n
(
θ̂n,1 − θ0,1

)
+ lim
n→∞

√
nθ0,1

= −∞.

2. (tmin test) Let for all α ∈ [0, 1], cα be such that

lim
n→∞

Pr[tn,min ≤ cα|θ0 = 0] = α.
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We want to show that for all θ 6≥ 0,

lim
n→∞

Pr[tn,min ≤ cα|θ0 = θ] = 1.

Assume without loss of generality that θmin = θ0,1 < 0. Then

plim
n→∞

tn,min = plim
n→∞

min{tn,1, . . . , tn,k}

= plim
n→∞

min

{√
nθ̂n,1
σ̂n,1

, . . . ,

√
nθ̂n,k
σ̂n,k

}

≤ plim
n→∞

√
nθ̂n,1
σ̂n,1

= plim
n→∞

√
n
(
θ̂n,1 − θ0,1

)
σ̂n,1

+ plim
n→∞

√
nθ0,1

σ̂n,1

= −∞.

2

B APPENDIX 2: DATA

Table 6 shows the grouped data of the Japanese household annual incomes used in the application. The

data are from the National Survey of Family Income and Expenditure published by the Statistics Bureau,

the Ministry of Public Management, Home Affairs, Posts and Telecommunications. Although they do not

use simple random sampling, they make appropriate adjustments for the grouped data; thus we can simply

apply our formula for the asymptotic variance–covariance matrix of a vector of sample GL curve ordinates

to this data. Note that the data are before-tax and exclude one-person households. Table 7 shows the CPI

in Japan used to deflate nominal incomes to real incomes.
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Table 6: Grouped Data of the Japanese Household Annual Incomes

Year Decile Decile Frequency Mean Coefficient
group (thousand yen) (thousand yen) of variation

1979 1 2,050 5,046 1,550 26.7
2 2,600 4,999 2,364 6.4
3 3,000 4,814 2,835 4.6
4 3,440 5,013 3,212 4.0
5 3,800 4,869 3,613 3.0
6 4,250 4,855 4,032 3.0
7 4,820 4,788 4,534 3.5
8 5,600 4,972 5,168 4.1
9 6,990 4,806 6,176 6.4
10 — 4,610 9,564 39.4

1984 1 2,500 5,259 1,841 27.1
2 3,200 5,148 2,875 7.3
3 3,800 5,049 3,511 4.6
4 4,310 4,966 4,055 3.7
5 4,860 4,954 4,583 3.4
6 5,470 4,909 5,141 3.3
7 6,200 4,941 5,816 3.7
8 7,240 4,981 6,700 4.6
9 9,000 4,963 8,030 6.3
10 — 4,784 12,203 42.0

1989 1 2,940 5,891 2,174 27.8
2 3,760 5,697 3,352 7.2
3 4,500 5,558 4,123 4.9
4 5,100 5,408 4,809 4.0
5 5,850 5,505 5,474 3.8
6 6,600 5,378 6,208 3.5
7 7,560 5,458 7,068 3.9
8 8,850 5,400 8,159 4.5
9 10,980 5,343 9,783 6.0
10 — 5,163 15,380 56.0

1994 1 3,330 5,723 2,464 28.1
2 4,350 5,619 3,861 7.5
3 5,200 5,557 4,786 5.0
4 6,000 5,395 5,606 4.4
5 6,900 5,522 6,430 4.2
6 7,860 5,394 7,348 3.9
7 9,000 5,472 8,378 3.9
8 10,500 5,482 9,696 4.5
9 13,030 5,442 11,668 6.3
10 — 5,346 18,136 47.9

1999 1 3,210 5,576 2,351 24.4
2 4,130 5,461 3,700 6.1
3 4,960 5,395 4,538 4.4
4 5,780 5,405 5,344 3.7
5 6,640 5,434 6,200 3.4
6 7,630 5,384 7,139 3.3
7 8,800 5,354 8,190 3.6
8 10,290 5,471 9,515 3.8
9 12,940 5,368 11,428 5.8
10 — 5,357 17,495 22.5

Note: The data exclude one-person households.
Source: National Survey of Family Income and Expenditure.
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Table 7: CPI in Japan (2000=100)

Year CPI
1979 69.8
1984 84.4
1989 89.3
1994 98.6
1999 100.7

References

Andrews, D. W. K. Empirical Process Methods in Econometrics. In Handbook of Econometrics; Engle, R. F.;

McFadden, D. L., Eds.; Elsevier Science, 1994; Vol. 4, 2247–2294.

Aura, S. Statistical Inference for Lorenz Curves Using Simulated Critical Values. Journal of Income Distri-

bution 2000, 9 , 199–213.

Beach, C. M.; Davidson, R. Distribution-Free Statistical Inference with Lorenz Curves and Income Shares.

Review of Economic Studies 1983, 50 , 723–735.

Berge, C. Topological Spaces; Dover Publications, 1963. (Republication in 1997).

Bishop, J. A.; Chakraborti, S.; Thistle, P. D. Asymptotically Distribution-Free Statistical Inference for

generalized Lorenz Curves. Review of Economics and Statistics 1989, 71 , 725–727.

Bishop, J. A.; Formby, J. P.; Thistle, P. D. Statistical Inference, Income Distributions, and Social Welfare.

In Research on Economic Inequality ; Slottje, D. J., Ed.; JAI Press, 1989; Vol. 1, 49–82.

Dardanoni, V.; Forcina, A. Inference for Lorenz Curve Orderings. Econometrics Journal 1999, 2 , 49–75.

Dasgupta, P.; Sen, A.; Starrett, D. Notes on the Measurement of Inequality. Journal of Economic Theory

1973, 6 , 180–187.

Davidson, J. Stochastic Limit Theory ; Oxford University Press, 1994.

Davidson, R.; Duclos, J.-Y. Statistical Inference for Stochastic Dominance and for Measurement of Poverty

and Inequality. Econometrica 2000, 68 , 1435–1464.

34



Doornik, J. A. Ox: An Object-Oriented Matrix Language, 4th Ed.; Timberlake Consultants, 2001.

Foster, J. E.; Shorrocks, A. F. Poverty Orderings. Econometrica 1988, 56 , 173–177.

Gail, M. H.; Gastwirth, J. L. A Scale-Free Goodness-of-Fit Test for the Exponential Distribution Based on

the Lorenz Curve. Journal of the American Statistical Association 1978, 73 , 787–793.

Gastwirth, J. L.; Gail, M. H. Simple Asymptotically Distribution-Free Methods for Comparing Lorenz Curves

and Gini Indices Obtained from Complete Data. In Advances in Econometrics; Basmann, R. L.; Rhodes,

G. F., Jr., Eds.; JAI Press, 1985; Vol. 4, 229–243.

Goldberger, A. S. One-Sided and Inequality Tests for a Pair of Means. In Contributions to Consumer Demand

and Econometrics: Essays in Honour of Henri Theil ; Bewley, R.; van Hoa, T., Eds.; St. Martin’s Press,

1992; 140–162.

Kodde, D. A.; Palm, F. C. Wald Criteria for Jointly Testing Equality and Inequality Restrictions. Econo-

metrica 1986, 54 , 1243–1248.

Maasoumi, E. Parametric and Nonparametric Tests of Limited Domain and Ordered Hypotheses in Eco-

nomics. In A Companion to Theoretical Econometrics; Baltagi, B. H., Ed.; Blackwell Publishers, 2001;

538–556.

Moore, D. S. An Elementary Proof of Asymptotic Normality of Linear Functions of Order Statistics. Annals

of Mathematical Statistics 1968, 39 , 263–265.

Pollard, D. Empirical Processes: Theory and Applications ; Vol. 2 of NSF-CBMS Regional Conference Series

in Probability and Statistics ; Institute of Mathematical Statistics, 1990.

Sen, A. On Economic Inequality , Expanded Ed.; Oxford University Press, 1997.

Shorrocks, A. F. Ranking Income Distributions. Economica 1983, 50 , 3–17.

Stoline, M. R.; Ury, H. K. Tables of the Studentized Maximum Modulus Distribution and an Application to

Multiple Comparisons Among Means. Technometrics 1979, 21 , 87–93.

van der Vaart, A. W. Asymptotic Statistics; Cambridge University Press, 1998.

35



van der Vaart, A. W.; Wellner, J. A. Weak Convergence and Empirical Processes; Springer-Verlag New York,

1996.
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