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概要
本稿では某大学某学部 2016 年 4月入学者のうち男子 301 名の入学後 4年間の成績データを用いて大学
中退の逐次意思決定モデルの構造母数の推定と反実仮想分析を試みる．条件付き選択確率（CCP）法は，
ノンパラメトリックな誘導形の中退確率関数（CCP関数）から積分した価値関数を逆算し，在学／退学の
2値ロジット・モデルに補正項を加えて構造母数を推定する．最適停止モデルで停止の価値（退学後の期待
生涯所得）が既知なら CCP法は容易である．ただし中退者が少ないと 2値ロジット・モデルに完全分離が
生じる場合がある．そこで本稿では在学／退学の対数オッズ比のノンパラメトリック推定値を従属変数と
して最小 2乗法を適用する修正 CCP法を用いる．構造母数の推定精度は誘導形の CCP関数の推定精度に
依存する．ある種の反実仮想の行動は割引因子と尺度母数を所与として他の構造母数と独立に識別できる．
例として某大学某学部 2016 年 4 月入学者の男子について，入学後 4 年間の在学者への学費補助が中退確
率を引き下げる処置効果を試算する．毎学期 10万円の学費補助は 4年間の累積中退確率を約 2.2%引き下
げる．ただし累積中退確率の低下は必ずしも卒業確率の上昇を意味せず，退学の意思決定を遅らせる効果と
解釈すべきである．

キーワード： 動的離散選択モデル，最適停止モデル，短期パネル，条件付き選択確率（CCP）法，反実仮想
分析，処置効果
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表 1: 2014年（6年制は 2012年）4月入学者の 2018年 3月時点の中途退学・卒業・留年状況

入学者数 退学者数 卒業者数 留年者数 退学／入学 卒業／入学 留年／入学
国立 男 56,293 1,862 45,315 9,116 .033 .805 .162

女 33,188 698 29,170 3,320 .021 .879 .100

公立 男 12,247 688 9,735 1,824 .056 .795 .149

女 15,083 462 13,233 1,388 .031 .877 .092

私立 男 227,745 22,072 174,689 30,984 .097 .767 .136

女 193,592 11,802 168,602 13,188 .061 .871 .068

計 538,148 37,584 440,744 59,820 .070 .819 .111

注：退学は除籍を含む．
資料：読売新聞教育ネットワーク事務局 (2018, p. 15)

1 はじめに
労働政策研究・研修機構 (2021, 表 21–1)によると，日本の一般労働者（正社員・正職員のうち雇用期間の
定め無し）の生涯賃金（退職金を含めない）は，男性が高校卒 2億 1280万円，大学・大学院卒 2億 6910万
円，女性が高校卒 1億 5230万円，大学・大学院卒 2億 1730万円であり，その差は男性 5630万円，女性 6500

万円に上る．これらは既卒者の 2019年の年齢階級別平均賃金に基づく生涯賃金であり，現在の学生が将来受
け取る生涯賃金とは異なるが，それでも大学卒業の期待収益は機会費用（＝直接費用＋逸失利益）を大きく上
回ると解釈してよいであろう．大学や個人により大卒プレミアムに格差はあるものの，その平均的な大きさか
ら考えると，過去最高となった 2021年度の日本の大学進学率 54.9%（「学校基本調査」）は，むしろ低すぎる
印象さえある．大卒学歴の（私的）収益率の日本の現状については北條 (2018)を参照．
少子化が進む中，大学進学率は高まっているが，大卒プレミアムの存在にも関わらず，中途退学者も数多く
発生している．文部科学省調査「学生の中途退学や休学等の状況について」（平成 26年 9月 25日）によると，
日本の大学・短大・高専 1,191校のうち，回答した 1,163校における平成 24年度（2012年度）の学部生（高
専を除く）の中途退学者数は 68,962 人であった．*1 読売新聞教育ネットワーク事務局 (2018) の調査による
と，日本の大学 755校（大学院大学・通信制のみの大学・募集停止の大学は除く）のうち，回答した 692校に
おける 2014年 4月入学者（6年制学部・学科は 2012年入学者）の 2018年 3月時点の退学率は 7.0%であっ
た（表 1）．留年者の退学も含めれば，最終的な退学率はもっと高くなる．下瀬川 (2015)によると，日本では
大学・短大中退者は正社員就業しづらく，正社員経験があれば高卒より高い賃金が得られるが，そうでなけれ
ば高卒と同等の賃金しか得られない．したがって中途退学による大卒プレミアムの放棄は，完全情報下の合理
的行動としては説明しにくい．同様の現象は日本以外でも見られ，Stange (2012, p. 52)は「大学中退パズル
（college dropout puzzle）」と呼んでいる．
実際は在学期間中の経済状況，自身の将来の可能性，大学・学部に対する関心や適性，大学生活の楽しさ等
は不確実であり，大学進学の意思決定時の情報は不完全である．その場合は中途退学のリスクやコストと大卒

*1 中途退学の理由は (1)経済的理由 15,210人（22.1%），(2)転学 11,283人（16.4%），(3)学業不振 10,520人（15.3%），(4)就
職 8,369人（12.1%）となっている．高専・大学院生を含めた数値では，経済的理由は平成 19年度（2007年度）の 14.0%から
平成 24年度（2012年度）は 20.4%に大きく上昇しており，景気後退の影響が大きいとみられる．
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プレミアム等のメリットを勘案し，大学進学の期待収益率やオプション価値が十分に高ければ，とりあえず大
学進学を試みるのが合理的である（Manski (1989)）．結果的に中途退学に終わっても，リスクを取る行動自体
は社会的に非効率とは限らず，一定数の中途退学者の発生は社会的に止むを得ない．それでも現在の中途退学
の状況に問題がないとは言えず，個別の大学の経営の視点では中途退学者は少ない方がよいし，学生・保護者
の視点では卒業の意思・見込みがなければ早く退学した方がよい．*2 また大学進学の意思決定時の不確実性も
可能な限り解消・軽減するのが望ましい．
合理的な行動として中途退学を理解し，適切な対応策を検討するために，本稿では在学／退学の意思決定を
最適停止問題として考える．本稿の分析の枠組みを簡単な例で説明する．単純化のため入学者は退学しなけれ
ば 4年後に自動的に卒業し，大卒の生涯賃金（＝卒業の価値）を得ると仮定する．在学の効用／費用が 0なら
在学の価値＝大卒の生涯賃金の割引現在価値となる．また退学の価値＝その時点以降の高卒の生涯賃金（具体
的な数値は後述）と仮定する．各学期の開始時に在学者は価値が高い方の行動を選択する．図 1aは割引因子
β の低下（在学中のみ）による在学の価値の推移の変化を男女別に示している．*3 1学期当たりの割引因子な
ので β = .98は年率約 4.1％，β = .96は年率約 8.5％の割引率に相当する．卒業の価値の 1％は男子 269.1

万円，女子 217.3万円なので，4年分を割り引くと入学直後の在学の価値はかなり低くなる．男子は β = .98

なら在学の価値が高いため退学しないが，β = .96なら最初の 2学期は退学を選択する．女子は β = .96でも
退学しない．図 1bは在学費用の発生による在学の価値の推移の変化を男女別に示している．1学期当たり 50

万円（私立大学の授業料に相当）の在学費用の発生による在学の価値の低下は小さく，男女とも意思決定は変
化しない．以上の例を本稿は次の 2点で精緻化する：(1)在学中の成績の推移をモデルに導入し，卒業の不確
実性や学生間の異質性を考慮する (2)モデルの母数をデータから推定する．
本稿では大学中退行動を最適停止問題として定式化し，某大学某学部 2016年 4月入学者のうち男子 301名
の入学後 4年間の成績データを用いて意思決定モデルの構造母数の推定と反実仮想分析を試みる．最適停止問
題では継続（在学）した場合と停止（退学）した場合の価値を逐次的に評価し，停止した方が価値が高くなっ
た時点で継続行動を停止する．本稿では累積修得単位数と GPAを分析者が観測する状態変数と仮定し，積分
したベルマン方程式を選択肢別価値関数で表して，在学／退学の 2値ロジット・モデルを導出する．意思決定
期間の一部（大学入学後 4年間）のみ観測する短期パネル（short panel）では，選択肢別価値関数を後ろ向き
帰納法で解いて尤度関数を評価する最尤法は煩雑になる．*4 本稿ではノンパラメトリックな誘導形の中退確率
関数から積分した価値関数を逆算し，2値ロジット・モデルに補正項を加えて意思決定モデルの構造母数を推
定する条件付き選択確率（conditional choice probability, CCP）法を用いる．最適停止モデルで停止の価値
（退学後の期待生涯所得）が既知なら構造母数は一定の条件の下で識別でき，推定も容易である．CCP法の入
門的な解説は Arcidiacono and Ellickson (2011)を参照．
なお日本の各大学・学部における各学期の中退者数は，例えばアメリカの大学と比較して遥かに少ない点に
は注意が必要である．中退者が少ないと 2値ロジット・モデルの最尤推定量は小標本で偏りが大きく，中退者
が 0など完全分離が生じると最尤推定値は存在しない．Bajari et al. (2016)は CCP法の簡便化を 2つ提案
した：(1)期待値の定義通りでなくノンパラメトリック回帰で補正項を計算する (2)ロジット・モデルでなく
対数オッズ比のノンパラメトリック推定値を従属変数としたモデルに最小 2乗法を適用して構造母数を推定す

*2 入学定員 2000 人の大学で中退率が 1% 上がると中退者は 20 人増える．例えば 20 人とも 2 年次終了時に中退すると，年間授業
料が 100万円なら 4000万円の減収となる．この減収額は入学検定料が 4万円なら 1000人の志願者減に相当する．

*3 本稿では退学・卒業の価値（＝生涯賃金）を所与とする．したがって退学・卒業後の割引因子は所与で変化しないと仮定している．
割引因子の永続的な変化の反実仮想分析には別の枠組みが必要となる．

*4 Keane and Wolpin (1994), Eisenhauer (2018)を参照．Gabler and Raabe (2020)が開発中の Pythonの respyパッケージ
は，有限期間の動的離散選択モデル（キャリア選択モデル）のシミュレーション最尤法／積率法による推定を支援する．
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(a) 1学期当たり 2％ポイントの割引因子の低下による在学の価値の低下
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(b) 1学期当たり 50万円の在学費用の発生による在学の価値の低下
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図 1: 男女別の在学／退学の価値の推移

る．後者は完全分離の問題の回避に役立つ．本稿は後者のみ取り入れた修正 CCP法を採用する．
割引因子と尺度母数を含む構造母数の識別は理論と簡単なモンテカルロ実験で確認できる．しかし構造母数
の推定精度はノンパラメトリックな誘導形の CCP関数の定式化と推定精度に依存する．本稿では簡便で柔軟
な一般化加法モデルを用いたが，300人× 8期間程度の小標本の 2値選択モデルでは，構造母数の正確な推定
値は得られなかった．ただし在学／退学が同時に発生する母数の組み合わせは限られるので，構造母数の妥当
な範囲に関する情報は得られる．それを踏まえて割引因子と尺度母数を設定すれば，効用関数の一時的な変化
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の反実仮想 CCP は他の構造母数と独立に（誘導形の CCP 関数と状態遷移確率分布のみから）識別できる．
本稿では例として某大学某学部 2016年 4月入学者の男子について，入学後 4年間の在学者への学費補助が中
退確率を引き下げる処置効果を試算する．毎学期 10万円の学費補助は 4年間の累積中退確率を約 2.2%引き
下げる．ただし学費補助は成績に直接的に影響しないので，4年間の累積中退確率の低下は必ずしも卒業確率
の上昇を意味せず，退学の意思決定を遅らせる効果と解釈すべきである．
本稿の構成は以下の通りである．第 2節では海外の先行研究と日本の関連研究を概観する．第 3節では大学
中退行動を最適停止問題として定式化し，在学／退学の逐次意思決定の構造モデルを導出する．第 4節では構
造母数と各種の反実仮想 CCPの識別を確認する．第 5節では修正 CCP法による構造母数の推定手順を解説
する．第 6節では簡単なモンテカルロ実験で推定量の性質を検討する．第 7節では某大学某学部 2016年 4月
入学者の男子の成績データを用いて構造母数の推定と学費補助の反実仮想分析を試みる．第 8節では結論と今
後の課題を述べる．

2 先行研究
2.1 海外の先行研究
大学進学・中退行動の包括的な研究は，National Longitudinal Study of the High School Class of 1972

（NLS72）の個票データを分析したManski and Wise (1983)を嚆矢とするが，不確実性下の逐次意思決定と
して大学進学・中退行動を分析した研究としては，Manski (1989)の理論研究と Altonji (1993)の実証研究が
先駆的である．大学進学は不確実性下の試みであり，中退は事後的に最適な判断である．したがって大学中退
率を引き下げる政策は，必ずしも社会厚生を改善しないとManski (1989)は指摘した．また大学進学の意思
決定は，大学卒業の事後収益率でなく，中退確率を考慮した事前収益率で判断する．Altonji (1993)は NLS72

の個票データを用いて誘導形の中退確率関数と対数賃金関数を推定し，大学進学の事前収益率を内部収益率と
して属性別に計算した．
個人のライフコース／キャリア選択の逐次意思決定モデルの構造推定の研究が発展する中で，大学中退の意
思決定モデルの構造推定も既に行われている．Arcidiacono (2004)は NLS72の個票データを用いて大学と専
攻（自然科学／ビジネス／人文社会科学／教育）の選択について高校卒業時・大学 3年進級時・大学卒業後の
3期間モデル（意思決定は 2回）を構造推定し，自己選択による専攻別の能力格差（主に数学）や観測されな
い異質性を統制した上でも専攻別の収益率格差すなわち処置効果（自然科学が最も高い）が存在するが，処置
効果より個人の選好が専攻の選択に影響するとしている．当該研究の主眼は大学と専攻の選択であるが，中退
も選択肢に含まれており，大学入学後の成績から自身の適性を学習して転学／転専攻／中退を選択することを
示している．
大学レベルの勉強に対する自身の適性は，入学前は不確実であり，入学後に成績を通じて学習する．高卒就
職後の大学進学が困難な場合，「とりあえず」大学に行くことは，不確実性下で不可逆的な意思決定を保留す
るオプション価値をもつ．Stange (2012)は National Educational Longitudinal Study (NELS)の男子学生
2055名（53％が大学進学）の個票データを用いて高校卒業時から大学 4年進級時までの 4期間の進学・中退
意思決定モデルを観測されない異質性を統制した上で構造推定し，反実仮想分析で大学進学のオプション価値
を計測している．1992年の大学進学のオプション価値は平均 14,900ドル（大学進学の総価値の 14％），合格
ぎりぎりの学力の学生で最大 25,000ドルと評価している．
大学中退の逐次意思決定モデルを解く際は，中退／卒業後の生涯所得の期待値や，状態変数（成績）の予測
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分布が必要となる．合理的な期待値や予測分布を事後的なデータから計算する従来の手法に対し，合理的期待
を仮定せず，主観的な期待値や予測分布をアンケート調査する手法も近年は増えている．Stinebrickner and

Stinebrickner (2014)は，自ら設計した Berea Panel Studyにおける Berea College（アメリカ）の 2001年
度入学生 341名の学期毎のアンケート調査と成績データを接合し，1年次前期から卒業までの 9期間の中退意
思決定モデル（意思決定は 1年次後期開始時から 4年次後期開始時までの 7回）を構造推定している．成績は
(1)落第確率 (2)将来の所得 (3)大学生活の楽しさの 3つに直接的に影響する．成績の主観的な予測分布は楽
観的であり，成績の情報は主に (2)と (3)への負の効果を通じて早期の中退者を増やすことを反実仮想分析で
示している．

2.2 日本の関連研究
大学中退の逐次意思決定モデルを構造推定した日本の実証研究は見当たらない．これまでの日本の実証研究
は分析対象により以下の通り分類できる．

標本調査を用いた研究 村澤 (2008) は「2005 年社会階層と社会移動全国調査（SSM）」の若年層Web 調査
（2007年 SSM若年層インターネット調査）の個票データを用いて大学中退行動の規定要因を混合 2値
ロジット・モデルで分析している．朴澤 (2016a)は東京大学大学院教育学研究科大学経営・政策研究セ
ンターが 2005～2011 年に実施した「高校生の進路についての調査」のパネル・データを用いて 2006

年度に現役で大学に進学した学生の 2年次／ 4年次までの中退率を計測している．
大学・学部を観測単位とした研究 丸山 (1984)は広島大学大学教育研究センターが全国の大学の学部を対象

に 1982年に実施した「大学教育に関する調査」のデータを用いて退学者数と退学率の規定要因を重回
帰分析している．近年は読売新聞教育取材班「大学の実力」のデータを用いた研究が目につく．清水
(2013)は社会科学系学部を対象として，2013年調査における 2008年度入学者の退学率・就職率・決定
率（＝就職率＋進学率）・実質決定率（＝（1－退学率）×決定率）の規定要因を重回帰分析している．
姉川 (2014)は 2008～2010年調査に回答した大学についてパネル・データを構築し，入学後 1年間の
退学率と標準修業年限卒業率の 2変数について，それぞれロジット変換して 2段階最小 2乗法で規定
要因を分析している．立石・小方 (2016)は 2016年調査における 2011年度（6年制学部は 2009年度）
入学者の退学率・留年率について，多項ロジット・モデル（退学率・留年率の高低で 4グループに分類）
と二分回帰木で規定要因を分析している．

集計時系列データを用いた研究 朴澤 (2016b)は「学校基本調査」の集計データから日本全体の男女合計の 8

年以内中退率を作成し，1973～2005年を推定期間とした時系列回帰分析で変動要因を分析している．
特定の大学・学部の学生を対象とした研究 入江・丸岡 (2017)は某私立大学の 2011年度入学生の 2015年 3

月までの在籍に関する生存曲線の規定要因を Cox比例ハザード・モデルで分析している．大学におけ
る IR（institutional research）の必要性とビッグデータ・AIへの関心の高まりから機械学習の手法を
用いた個別の学生の中退予測の研究が最近は多い．大友他 (2014)は某大学の学生の 1年次後期履修登
録完了時のデータを用いて 2年次／ 4年次終了までの退学と留年をサポートベクターマシンで予測して
いる．鎌田・井上 (2016)は某地方国立大学の 2011年度入学生の 2015年 5月までの中退の要因を分類
木で分析している．竹橋他 (2016)は東京未来大学の 2013年度入学生の 2年次後期開始時の在籍者に
ついて，3年次後期開始時の在籍状況を 2値ロジット・モデルで予測している．近藤・畠中 (2016)は
某大学の 2009～2012年度入学生の 1年次前期開始時／終了時のデータを用いて機械学習ツールWeka
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で利用できる様々な手法で 3年次 4月の在籍状況を予測している．高野 (2020) は兵庫大学の 2011～
2018年度入学生の入学時／ 1年次前期終了時／ 1年次後期終了時のデータを用いて 2019年 6月末ま
での中退の規定要因を分類木で分析している．白鳥他 (2020)は某大学の 2012～2014年度入学生につ
いて，2値ロジット・モデルで算出した学期ごとの中退確率の推移を X-means法でクラスタリングし
て中退パターンを類型化している．

本稿は特定の学部の学生を分析対象とするが，中退予測でなく意思決定モデルの構造母数の推定と反実仮想分
析を目的とする点が日本の従来の研究と異なる．

3 最適停止モデル
3.1 最適停止問題
時点 t = 0, . . . , T で継続／停止の 2値選択を逐次的に行い，時点 T ∗ > T まで生存する個人を考える．停
止は不可逆的であり，停止した時点で意思決定は終了する．効用関数は時間について加法分離的とする．dt を
選択（継続ダミー），st を状態ベクトル（dt−1 を含む），D(st)を選択集合，Ut(dt; st)を (dt, st)がもたらす
効用，β を割引因子とする．{dt, st}をマルコフ過程とし，{Pt(.|.; .)}を {st}の状態遷移確率分布とする．す
なわち t = 0, . . . , T ∗ − 1について

st+1 ∼ Pt+1(.|st; dt)

時点 0の期待効用最大化問題は，s0 を所与として

max
{δt(.)}

E

(
T∑

t=0

βtUt(δt(st); st) +

T∗∑
t=T+1

βtUt(δT (sT ); st)|s0

)
s.t. st+1 ∼ Pt+1(.|st; δt(st)), t = 0, . . . , T − 1

st+1 ∼ Pt+1(.|st; δT (sT )), t = T, . . . , T ∗ − 1

and δt(st) ∈ D(st), t = 0, . . . , T

ただし δt(.)は方策関数．

3.2 価値関数
時点 tの価値関数を Vt(.)とする．すなわち t ≤ T なら任意の st について

Vt(st) := max
{δs(.)}

E

(
T∑

s=t

βs−tUs(δs(ss); ss) +

T∗∑
s=T+1

βs−tUs(δT (sT ); ss)|st

)
s.t. ss+1 ∼ Ps+1(.|ss; δs(ss)), s = t, . . . , T − 1

ss+1 ∼ Ps+1(.|ss; δT (sT )), s = T, . . . , T ∗ − 1

and δs(ss) ∈ D(ss), s = t, . . . , T

時点 T + 1では任意の sT+1 について

VT+1(sT+1) := E

(
T∗∑

t=T+1

βt−(T+1)Ut(dT ; st)|sT+1

)
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後ろ向き帰納法により，時点 t = T, . . . , 0のベルマン方程式は，任意の st について

Vt(st) = max
dt∈D(st)

Ut(dt; st) + β E(Vt+1(st+1)|st; dt)

s.t. st+1 ∼ Pt+1(.|st; dt)

V 1
t (.), V

0
t (.)を停止前／後の価値関数とすると，停止は不可逆的なので，時点 tのベルマン方程式は，任意の

st について

V 1
t (st) = max

dt∈{0,1}

{
Ut(dt; st) + β E

(
V dt
t+1(st+1)|st; dt

)}
(1)

V 0
t (st) = E

(
T∗∑
s=t

βs−tUs(0; ss)|st; dt = 0

)
(2)

3.3 積分した価値関数
分析者は状態ベクトル st の一部のみ観測する．分析者が観測する状態ベクトルを xt とし，ut(dt;xt) :=

E(Ut(dt; st)|xt)，et(dt) := Ut(dt; st)− ut(dt;xt)，et := (et(0), et(1))
′ とする．時点 tのベルマン方程式は，

任意の (xt, et)について

V 1
t (xt, et) = max

dt∈{0,1}

{
ut(dt;xt) + et(dt) + β E

(
V dt
t+1(xt+1, et+1)|xt, et; dt

)}
(3)

V 0
t (xt, et) = E

(
T∗∑
s=t

βs−t(us(0;xs) + es(0))|xt, et; dt = 0

)
(4)(

xt+1

et+1

)
∼ Pt+1(.|xt, et; dt)

{dt,xt}は {et}と独立とし，{et}は独立かつ同一な分布 G(.)にしたがうと仮定する．{Ft(.|.; .)}を {xt}の
状態遷移確率分布とする．すなわち t = 0, . . . , T ∗ − 1について

xt+1 ∼ Ft+1(.|xt; dt)

V 0
t (., .), V

1
t (., .)を et について積分した価値関数を V̄ 0

t (.), V̄
1
t (.)とする．すなわち j = 0, 1と任意の xt につ

いて
V̄ j
t (xt) :=

∫
V j
t (xt, et) dG(et)

時点 tの積分したベルマン方程式は，任意の xt について

V̄ 1
t (xt) = E

(
max

dt∈{0,1}

{
ut(dt;xt) + et(dt) + β E

(
V̄ dt
t+1(xt+1)|xt; dt

)}
|xt

)
(5)

V̄ 0
t (xt) = E

(
T∗∑
s=t

βs−tus(0;xs)|xt; dt = 0

)
(6)

導出は Arcidiacono and Ellickson (2011, pp. 367–368)を参照．
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3.4 選択肢別価値関数
時点 tの選択肢別期待価値関数を V e

t (.; .)とする．すなわち任意の (dt,xt)について

V e
t (xt; dt) := E

(
V̄ dt
t+1(xt+1)|xt; dt

)
積分したベルマン方程式 (5), (6)より任意の xt について

V̄ 1
t (xt) = E

(
max

dt∈{0,1}
{ut(dt;xt) + et(dt) + βV e

t (xt; dt)}|xt

)
(7)

V̄ 0
t (xt) = ut(0;xt) + βV e

t (xt; 0) (8)

時点 tの選択肢別価値関数を vt(.; .)とする．すなわち任意の (dt,xt)について
vt(xt; dt) := ut(dt;xt) + βV e

t (xt; dt)

式 (7), (8)より任意の xt について

V̄ 1
t (xt) = E

(
max

dt∈{0,1}
{vt(xt; dt) + et(dt)}|xt

)
(9)

V̄ 0
t (xt) = vt(xt; 0) (10)

3.5 条件付き選択確率（CCP）
時点 tで継続中の個人の選択を考える．xt を所与とすると，最適な選択は

d∗t := arg max
dt∈{0,1}

{vt(xt; dt) + et(dt)}

= [vt(xt; 1) + et(1) > vt(xt; 0) + et(0)]

ただし [.]は指示関数．xt を所与とした d∗t の条件付き確率質量関数を pt(.|xt)とすると，継続の条件付き選
択確率（CCP）は

pt(1|xt) := Pr[d∗t = 1|xt]

= Pr[vt(xt; 1) + et(1) > vt(xt; 0) + et(0)|xt]

=

∫
[vt(xt; 1) + et(1) > vt(xt; 0) + et(0)] dG(et)

{et(j)}は位置母数 −γ，尺度母数 σ の独立かつ同一なガンベル分布にしたがうと仮定する．ただし γ はオイ
ラー定数．*5 すると任意の xt について

pt(1|xt) =
exp(vt(xt; 1)/σ)

exp(vt(xt; 0)/σ) + exp(vt(xt; 1)/σ)
= Λ

(
vt(xt; 1)− vt(xt; 0)

σ

)
(11)

ただし Λ(.)はロジスティック（シグモイド）関数．また任意の xt について

V̄ 1
t (xt) = σ ln

(
exp

(
vt(xt; 0)

σ

)
+ exp

(
vt(xt; 1)

σ

))
(12)

Arcidiacono and Ellickson (2011, p. 372)を参照．
以下で使用する基本的な結果を補題としてまとめておく．

*5 位置母数 −γ のガンベル分布の平均は 0．効用の計測単位が任意なら尺度母数 σ は 1に基準化できる．
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補題 1. 任意の xt について
ln
pt(1|xt)

pt(0|xt)
=
vt(xt; 1)− vt(xt; 0)

σ

証明. 式 (11)より明らか．

補題 2. 任意の xt と j = 0, 1について
V̄ 1
t (xt) = vt(xt; j)− σ ln pt(j|xt)

証明. 式 (11), (12)より任意の xt と j = 0, 1について

ln pt(j|xt) =
vt(xt; j)− V̄ 1

t (xt)

σ

式変形により結果が得られる．

補題 3. 時点 t = 0, . . . , T − 1において，任意の xt と j = 0, 1について
vt(xt; 1) = ut(1;xt) + β E(vt+1(xt+1; j)− σ ln pt+1(j|xt+1)|xt; dt = 1) (13)

vt(xt; 0) = ut(0;xt) + β E(vt+1(xt+1; 0)|xt; dt = 0) (14)

証明. 定義より任意の xt と j = 0, 1について

vt(xt; j) = ut(j;xt) + β E
(
V̄ j
t+1(xt+1)|xt; dt = j

)
V̄ 1
t+1(.)は前補題，V̄ 0

t+1(.)は式 (10)を 1時点ずらして代入する．

3.6 後ろ向き帰納法
V e
T (.; .), {Ft(.|.; .)}を所与として {vt(.; .)}は後ろ向き帰納法で求まる．まず停止の価値関数 {vt(.; 0)}を以

下の手順で求める．

1. V e
T (.; 0)が所与なので vT (.; 0) := uT (0; .) + βV e

T (.; 0)．
2. 時点 t = 0, . . . , T − 1において，任意の xt について

vt(xt; 0) = ut(0;xt) + β E
(
V̄ 0
t+1(xt+1)|xt; dt = 0

)
= ut(0;xt) + β

∫
vt+1(xt+1; 0) dFt+1(xt+1|xt; dt = 0)

これを逆順で逐次的に計算する．

次に {vt(.; 0)}を所与として継続の価値関数 {vt(.; 1)}を以下の手順で求める．

1. V e
T (.; 1)が所与なので vT (.; 1) := uT (1; .) + βV e

T (.; 1)

2. 時点 t = 0, . . . , T − 1において，任意の xt について
vt(xt; 1)

= ut(1;xt) + β E
(
V̄ 1
t+1(xt+1)|xt; dt = 1

)
= ut(1;xt) + βσ

∫
ln

(
exp

(
vt+1(xt+1; 0)

σ

)
+ exp

(
vt+1(xt+1; 1)

σ

))
dFt+1(xt+1|xt; dt = 1)

(15)

これを逆順で逐次的に計算する．
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4 識別
4.1 識別問題
多数の個人の逐次的な選択と状態ベクトル {dt,xt}のパネル・データを用いて最適停止モデルの構造母数を
推定したい．その前提として構造母数の識別を検討する．本稿の最適停止モデルは以下の 4つで構成される．

1.（分析者から見た）効用関数 {ut(.; .)}
2. 割引因子 β

3. 観測される状態ベクトル {xt}の状態遷移確率分布 {Ft(.|.; .)}
4. 観測されない状態 {et(.)}の分布 G(.)

{Ft(.|.; .)}は各時点の経験分布で識別できる．本稿では {et(j)}を平均 0，尺度母数 σ の独立かつ同一なガン
ベル分布に従うと仮定する．誘導形の CCP関数 {pt(.|.)}は各時点のノンパラメトリック回帰で識別できる．
したがって {Ft(.|.; .)}, {pt(.|.)}を既知として ({ut(.; .)}, β, σ)の識別を検討する．
一般に {pt(.|.)}から ({ut(.; .)}, β, σ)は一意に定まらない．例えば β = 0，σ = 1とすると，式 (11)より任
意の xt について

pt(1|xt) = Λ(ut(1;xt)− ut(0;xt))

すなわち静学的な 2値ロジット・モデルとなるが，pt(.|.)は効用の差 ut(1; .)− ut(0; .)のみに依存するため，
(β, σ) が既知でも pt(.|.) から効用の水準 ut(.; .) は定まらない．一般に ({ut(.; .)}, β, σ) の識別には追加的な
識別制約が必要となる．

4.2 割引因子
割引因子 β に関する代表的な識別制約は，効用関数の引数から一部の状態変数を除外する除外制約である．
除外制約による β の識別の詳細は Abbring and Daljord (2020)を参照．非定常な有限期間モデルでは，時点
tを状態変数と解釈できるので，効用関数 ut(.; .)が tに依存しなければ除外制約は成立する．また最適停止モ
デルで停止の価値が既知または 0と基準化できるなら，階数条件の下で {ut(.; .)}と独立に β は一意に識別で
きる．Bajari et al. (2016, Theorem 2(i))を参照．以下では本稿のモデルに沿って，停止の価値を 0，ガンベ
ル分布の尺度母数 σ を 1と基準化できない場合に Daljord et al. (2019, Theorem 1)を修正・拡張する．

定理 1. 以下を仮定する．

1.（除外制約）継続時の効用関数 ut(1; .)は時点 tに依存しない．
2. 停止の価値関数 vt(.; 0)は状態ベクトル xt に依存しない．
3.（階数条件）ある 2つの状態 x ̸= x′ について

E(ln pt+1(0|xt+1)|xt = x; dt = 1)− E(ln pt(0|xt)|xt−1 = x; dt−1 = 1)

̸= E(ln pt+1(0|xt+1)|xt = x′; dt = 1)− E(ln pt(0|xt)|xt−1 = x′; dt−1 = 1)

このとき 3期間以上のパネル・データから β は一意に識別できる．
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証明. 補題 1より任意の xt について

vt(xt; 1) = vt(xt; 0) + σ ln
pt(1|xt)

pt(0|xt)

上式と式 (13)を結合すると，任意の xt について

vt(xt; 0) + σ ln
pt(1|xt)

pt(0|xt)
= ut(1;xt) + β E(vt+1(xt+1; 0)− σ ln pt+1(0|xt+1)|xt; dt = 1) (16)

xt = xt+1 = xとして階差をとると，除外制約より任意の xについて

∆vt(x; 0) + σ∆ln
pt(1|x)
pt(0|x)

= β E(vt+1(xt+1; 0)− σ ln pt+1(0|xt+1)|xt = x; dt = 1)

− β E(vt(xt; 0)− σ ln pt(0|xt)|xt−1 = x; dt−1 = 1) (17)

vt(.; 0)は xt に依存しないので yt := vt(.; 0)とすると，任意の xについて

∆yt + σ∆ln
pt(1|x)
pt(0|x)

= β(yt+1 − σE(ln pt+1(0|xt+1)|xt = x; dt = 1))

− β(yt − σE(ln pt(0|xt)|xt−1 = x; dt−1 = 1)) (18)

x ̸= x′ について上式の差をとって σ で割ると

∆ln
pt(1|x)
pt(0|x)

−∆ln
pt(1|x′)

pt(0|x′)

= −β(E(ln pt+1(0|xt+1)|xt = x; dt = 1)− E(ln pt(0|xt)|xt−1 = x; dt−1 = 1))

+ β(E(ln pt+1(0|xt+1)|xt = x′; dt = 1)− E(ln pt(0|xt)|xt−1 = x′; dt−1 = 1))

したがって階数条件の下で β は一意に定まる．

vt(.; 0) = 0かつ σ = 1なら式 (17)より直ちに任意の xについて

∆ln
pt(1|x)
pt(0|x)

= −β(E(ln pt+1(0|xt+1)|xt = x; dt = 1)− E(ln pt(0|xt)|xt−1 = x; dt−1 = 1)) (19)

すなわち Daljord et al. (2019, Theorem 1)の結果が得られる．この場合の階数条件は，ある状態 xについて

E(ln pt+1(0|xt+1)|xt = x; dt = 1) ̸= E(ln pt(0|xt)|xt−1 = x; dt−1 = 1)

選択肢別期待価値関数 V e
t (.; .)の定義と補題 2より，この階数条件は V e

t (x; 1) ̸= V e
t−1(x; 1)と表せる．した

がって（継続／停止の対数オッズ比の変化÷継続の期待価値の変化）として β は識別される．選択確率が将来
の価値に依存しなければ β = 0となる．
定理 1の階数条件は∆V e

t (x; 1) ̸= ∆V e
t (x

′; 1)と表せる．したがって 2つの状態における（継続／停止の対
数オッズ比の変化の差÷継続の期待価値の変化の差）として β は識別される．vt(.; 0) ̸= 0だと vt(.; 0)が変化
すれば，継続の期待価値が変化しなくても継続／停止の対数オッズ比は変化する．ただし vt(.; 0)が状態に依
存しなければ，vt(.; 0)の変化による継続／停止の対数オッズ比の変化は状態によらず均一となる．そのため
「変化の比」でなく「変化の差の比」で β を識別できる．選択確率が将来の価値に依存しなければ，対数オッ
ズ比の変化は将来の価値の変化に依存せず β = 0となる．
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4.3 尺度母数
割引因子 β を所与としてガンベル分布の尺度母数 σ の識別を確認する．前定理の条件に加え，停止の価値

{vt(.; 0)}が一定でなく既知なら階数条件の下で σ は一意に識別できる．

定理 2. 以下を仮定する．

1. 継続時の効用関数 ut(.; 1)は時点 tに依存しない．
2. 停止の価値関数 vt(.; 0)は状態ベクトル xt に依存せず既知で ∆vt(.; 0) ̸= 0

3.（階数条件）ある状態 xについて

∆ln
pt(1|x)
pt(0|x)

̸= −β(E(ln pt+1(0|xt+1)|xt = x; dt = 1)− E(ln pt(0|xt)|xt−1 = x; dt−1 = 1))

このとき β を所与として 3期間以上のパネル・データから σ は一意に識別できる．

証明. 式 (18)を変形すると

∆(yt − βyt+1)

= −σ
[
∆ln

pt(1|x)
pt(0|x)

+ β(E(ln pt+1(0|xt+1)|xt = x; dt = 1)− E(ln pt(0|xt)|xt−1 = x; dt−1 = 1))

]
したがって β を所与として階数条件の下で σ は一意に定まる．

上記の階数条件は式 (19)と矛盾するが，式 (17)より ∆vt(.; 0) ̸= 0なら一般に式 (19)は成立しない．
尺度母数はモデルの分母に現れるので，逆数で考えると分かりやすい．継続の期待価値に含まれる将来の停
止の価値を調整した上で，（継続の期待価値の変化によらない継続／停止の対数オッズ比の変化÷停止の価値
の変化）の符号を逆にして 1/σ は識別される．停止の価値の変化に対する継続／停止の対数オッズ比の変化
が小さいと 1/σ は小さく（σ は大きく）なり，継続／停止の選択における観測されない状態の影響が大きく
なる．

4.4 効用関数
割引因子 β と尺度母数 σ を所与として効用関数 {ut(.; .)} のノンパラメトリックな識別を考える．式 (16)

より任意の xt について

ut(1;xt) = vt(xt; 0) + σ ln
pt(1|xt)

pt(0|xt)
− β E(vt+1(xt+1; 0)− σ ln pt+1(0|xt+1)|xt; 1)

したがって停止の価値関数 {vt(.; 0)}が既知なら {ut(1; .)}はノンパラメトリックに識別できる．{ut(0; .)}は
{vt(.; 0)}と同一視してよい．

4.5 反実仮想 CCP

4.5.1 効用関数の一時的な変化
個人の効用でなく行動（選択）の反実仮想分析が目的なら，想定する反実仮想により意思決定モデルの完全
な識別が不要な場合がある．例えば効用関数の一時的な変化の反実仮想 CCPの識別に効用関数の識別は不要
である．非定常なモデルにおける反実仮想 CCPの識別の詳細は Arcidiacono and Miller (2020)を参照．

13



反実仮想の効用関数を {u∗t (.; .)}，効用関数の変化を∆t(.; .) := u∗t (.; .)−ut(.; .)，反実仮想 CCPを {p∗t (.|.)}
とする．ただし効用関数の変化は観測期間のみとし，t > T では ∆t(.; .) = 0とする．反実仮想における停止
前／後の積分した価値関数を V̄ 1∗

t (.), V̄ 0∗
t (.)とすると，時点 T + 1の問題は変化しないので，j = 0, 1につい

て V̄ j∗
T+1(.) = V̄ j

T+1(.)となる．
反実仮想の選択肢別価値関数を {v∗t (.; .)}とすると，時点 T では任意の xT と j = 0, 1について

v∗T (xT ; j) = u∗T (j;xT ) + β E
(
V̄ j
T+1(xT+1)|xT ; dT = j

)
= uT (j;xT ) + ∆T (j;xT ) + β E

(
V̄ j
T+1(xT+1)|xT ; dT = j

)
= vT (xT ; j) + ∆T (j;xT )

継続／停止の価値の差は，任意の xT について

v∗T (xT ; 1)− v∗T (xT ; 0) = vT (xT ; 1)− vT (xT ; 0) + ∆T (1;xT )−∆T (0;xT )

継続／停止の対数オッズ比は，補題 1より任意の xT について

ln
p∗T (1|xT )

p∗T (0|xT )
=
v∗T (xT ; 1)− v∗T (xT ; 0)

σ

=
vT (xT ; 1)− vT (xT ; 0)

σ
+

∆T (1;xT )−∆T (0;xT )

σ

= ln
pT (1|xT )

pT (0|xT )
+

∆T (1;xT )−∆T (0;xT )

σ

したがって σ が既知なら pT (.|.)と ∆T (.; .)のみから p∗T (.|.)は求まる．
補題 3より時点 t = 0, . . . , T − 1では任意の xt と j = 0, 1について

v∗t (xt; 1) = u∗t (1;xt) + β E(v∗t+1(xt+1; j)− σ ln p∗t+1(j|xt+1)|xt; dt = 1)

v∗t (xt; 0) = u∗t (0;xt) + β E(v∗t+1(xt+1; 0)|xt; dt = 0)

以下で示すように (β, σ)が既知なら p∗T (.|.)を所与として {p∗t (.|.)}は逆順で逐次的に求まる．

補題 4. 時点 t = 0, . . . , T − 1において，任意の xt と j = 0, 1について

v∗t (xt; 1) = vt(xt; 1) + ∆t(1;xt) +

T−t∑
s=1

βs E

(
∆t+s(j;xt+s)− σ ln

p∗t+s(j|xt+s)

pt+s(j|xt+s)
|xt; dt = 1

)

v∗t (xt; 0) = vt(xt; 0) + ∆t(0;xt) +

T−t∑
s=1

βs E(∆t+s(0;xt+s)|xt; dt = 0)

証明. 逐次期待値の法則より任意の xt と j = 0, 1について

v∗t (xt; 1)− vt(xt; 1) = ∆t(1;xt) + β E

(
v∗t+1(xt+1; j)− vt+1(xt+1; j)− σ ln

p∗t+1(j|xt+1)

pt+1(j|xt+1)
|xt; dt = 1

)
= ∆t(1;xt)− β E

(
σ ln

p∗t+1(j|xt+1)

pt+1(j|xt+1)
|xt; dt = 1

)
+ β E

(
∆t+1(j;xt+1)− βσ ln

p∗t+2(j|xt+2)

pt+2(j|xt+2)
|xt; dt = 1

)
+ · · ·

+ βT−t−1 E

(
∆T−1(j;xT−1)− βσ ln

p∗T (j|xT )

pT (j|xT )
|xt; dt = 1

)
+ βT−t E(v∗T (xT ; j)− vT (xT ; j)|xt; dt = 1)
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v∗T (.; j)− vT (.; j) = ∆T (j; .)より結果が得られる．{v∗t (.; 0)}についても同様．

定理 3. 時点 t = 0, . . . , T − 1において，任意の xt と j = 0, 1について

ln
p∗t (1|xt)

p∗t (0|xt)
= ln

pt(1|xt)

pt(0|xt)
+

∆t(1;xt)−∆t(0;xt)

σ

+

T−t∑
s=1

βs E

(
∆t+s(j;xt+s)

σ
− ln

p∗t+s(j|xt+s)

pt+s(j|xt+s)
|xt; dt = 1

)

−
T−t∑
s=1

βs E

(
∆t+s(0;xt+s)

σ
|xt; dt = 0

)
証明. 前補題より任意の xt と j = 0, 1について

v∗t (xt; 1)− v∗t (xt; 0) = vt(xt; 1) + ∆t(1;xt) +

T−t∑
s=1

βs E

(
∆t+s(j;xt+s)− σ ln

p∗t+s(j|xt+s)

pt+s(j|xt+s)
|xt; dt = 1

)

− vt(xt; 0)−∆t(0;xt)−
T−t∑
s=1

βs E(∆t+s(0;xt+s)|xt; dt = 0)

両辺を σ で割って補題 1を適用する．

定理より (β, σ) が既知なら {pt(.|.)} と {∆t(.; .)} のみから {p∗t (.|.)} を識別できる．すなわち {ut(.; .)} の
識別は不要である．なお停止時の効用関数の変化 ∆t(0; .)が状態ベクトル xt に依存しない場合，定理は少し
単純化できる．特に ∆t(0; .) = 0なら時点 t = 0, . . . , T − 1において，任意の xt について

ln
p∗t (1|xt)

p∗t (0|xt)
= ln

pt(1|xt)

pt(0|xt)
+

∆t(1;xt)

σ

−
T−t∑
s=1

βs
(
E
(
ln p∗t+s(0|xt+s)|xt; dt = 1

)
− E(ln pt+s(0|xt+s)|xt; dt = 1)

)
(20)

上式の {E(ln pt+s(0|xt+s)|xt; dt = 1)}と {E (ln p∗t+s(0|xt+s)|xt; dt = 1
)} の計算は，状態 xt から xt+s へ

の経路の数が sの指数関数で増えるため，sが大きいと直接的な計算が困難になる．この「次元の呪い」は逐
次計算で回避できる．

定理 4. 時点 t = 0, . . . , T − 2において，任意の xt と s = 2, . . . , T − tについて

E(ln pt+s(0|xt+s)|xt; dt = 1) =

∫
E(ln pt+s(0|xt+s)|xt+1; dt+1 = 1)pt+1(1|xt+1) dFt+1(xt+1|xt; dt = 1)

証明. 逐次期待値の法則と {dt,xt}のマルコフ性より任意の xt と s = 2, . . . , T − tについて

E(ln pt+s(0|xt+s)|xt; dt = 1)

= E(E(ln pt+s(0|xt+s)|xt+1; dt+1)|xt; dt = 1)

=

∫ 1∑
j=0

E(ln pt+s(0|xt+s)|xt+1; dt+1 = j)pt+1(j|xt+1) dFt+1(xt+1|xt; dt = 1)

=

∫
E(ln pt+s(0|xt+s)|xt+1; dt+1 = 0)pt+1(0|xt+1) dFt+1(xt+1|xt; dt = 1)

+

∫
E(ln pt+s(0|xt+s)|xt+1; dt+1 = 1)pt+1(1|xt+1) dFt+1(xt+1|xt; dt = 1)
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停止は不可逆的なので，dt+1 = 0なら s ≥ 2について dt+s = 0すなわち pt+s(0|.) = 1．したがって第 1項は
0．

定理より {E(ln pt+1(0|xt+1)|xt; dt = 1)}から {E(ln pt+2(0|xt+2)|xt; dt = 1)}を計算できる．これを繰り
返して {E(ln pt+s(0|xt+s)|xt; dt = 1)}を逐次的に計算する．{E (ln p∗t+s(0|xt+s)|xt; dt = 1

)}も同様．
また dt+1 = 0なら s ≥ 2について pt+s(1|.) = 0なので，{E(pt+s(1|xt+s)|xt; dt = 1)}も同様に計算でき
る．t = 0とすれば {E(ps(1|xs)|x0)}が得られるが，これは逐次期待値の法則より {E(ds|x0)} すなわち時点
0で見た将来の継続確率に等しい．{E (p∗t+s(1|xt+s)|xt; dt = 1

)}も同様．
4.5.2 状態遷移確率分布の一時的な変化
効用関数の一時的な変化の場合と異なり，状態遷移確率分布の一時的な変化の反実仮想 CCPの識別は短期
パネルだと難しい．反実仮想の状態遷移確率分布を {F ∗

t (.|.; .)}，反実仮想 CCPを {p∗t (.|.)}とする．ただし
状態遷移確率分布の変化は観測期間のみとし，t > T では F ∗

t+1(.|.; .) = Ft+1(.|.; .)とする．反実仮想におけ
る停止前／後の積分した価値関数を V̄ 1∗

t (.), V̄ 0∗
t (.)とすると，時点 T + 1の問題は変化しないので，j = 0, 1

について V̄ j∗
T+1(.) = V̄ j

T+1(.)となる．
反実仮想の選択肢別価値関数を {v∗t (.; .)}とし，反実仮想の期待値を E∗(.)で表すと，時点 T では任意の xT

と j = 0, 1について

v∗T (xT ; j) = uT (j;xT ) + β E∗
(
V̄ j
T+1(xT+1)|xT ; dT = j

)
= uT (j;xT ) + β E

(
V̄ j
T+1(xT+1)|xT ; dT = j

)
+ β E∗

(
V̄ j
T+1(xT+1)|xT ; dT = j

)
− β E

(
V̄ j
T+1(xT+1)|xT ; dT = j

)
= vT (xT ; j) + β

(
E∗
(
V̄ j
T+1(xT+1)|xT ; dT = j

)
− E

(
V̄ j
T+1(xT+1)|xT ; dT = j

))
継続／停止の価値の差は，任意の xT について

v∗T (xT ; 1)− v∗T (xT ; 0) = vT (xT ; 1)− vT (xT ; 0)

+ β
(
E∗ (V̄ 1

T+1(xT+1)|xT ; dT = 1
)
− E

(
V̄ 1
T+1(xT+1)|xT ; dT = 1

))
− β

(
E∗ (V̄ 0

T+1(xT+1)|xT ; dT = 0
)
− E

(
V̄ 0
T+1(xT+1)|xT ; dT = 0

))
したがって p∗T (.|.)の識別には V̄ 1

T+1(.), V̄
0
T+1(.)が必要となる．割引因子の一時的な変化の場合も同様．詳細

は Arcidiacono and Miller (2020, p. 480)を参照．

16



5 構造推定
5.1 最尤法
状態遷移確率分布 {Ft(.|.; .)}の確率質量／密度関数を {ft(.|.; .)}とする．初期状態 x0 を所与とした選択と
状態ベクトル (d0, {dt,xt}Tt=1

)の条件付き確率質量／密度関数の予測誤差分解は，{dt,xt}のマルコフ性より

p
(
d0, {dt,xt}Tt=1|x0

)
=

T∏
t=1

p(dt,xt|dt−1,xt−1)p(d0|x0)

=

T∏
t=1

pt(dt|xt)ft(xt|xt−1; dt−1)p0(d0|x0)

=

T∏
t=0

pt(dt|xt)

T∏
t=1

ft(xt|xt−1; dt−1)

母数を導入し，効用関数を {ut(.; .;θ1)}，状態遷移確率分布を {ft(.|.; .;θ2)}と書く．θ1 を推定したい（θ2 に
関心はない）．選択肢別価値関数 {vt(.; .)}は (θ1,θ2)に依存するので CCP関数 {pt(.|.)}も (θ1,θ2)に依存す
る（割引因子 β と尺度母数 σ への依存は省略）．CCP関数を {pt(.|.;θ1,θ2)}と書くと，{dt,xt}を所与とし
た (θ1,θ2)の対数尤度関数は

ℓ(θ1,θ2; {dt,xt}) =
T∑

t=0

ln pt(dt|xt;θ1,θ2) +

T∑
t=1

ln ft(xt|xt−1; dt−1;θ2)

大きさ nの無作為標本 {di,t,xi,t}を所与とした (θ1,θ2)の対数尤度関数は

ℓ(θ1,θ2; {di,t,xi,t}) =
n∑

i=1

T∑
t=0

ln pt(di,t|xi,t;θ1,θ2) +

n∑
i=1

T∑
t=1

ln ft(xi,t|xi,t−1; di,t−1;θ2)

完全な最尤法の計算負荷が大きい場合は第 2項のみで θ2 を推定し，θ2 を所与として第 1項の 2値ロジット・
モデルのみで θ1 を推定してもよい．ただし推定効率は低下する．

5.2 CCP法
式 (11)の 2値ロジット・モデルの最尤推定の際は，反復計算のステップ毎に後ろ向き帰納法で選択肢別価
値関数 {vt(.; .)}を再計算する必要がある．ただし誘導形の CCP関数 {pt(.|.)}をノンパラメトリック回帰で
推定すれば，後ろ向き帰納法を使わずに {vt(.; 0)}を所与として {vt(.; 1)}を計算できる．特に割引因子 β が
既知で尺度母数 σ = 1，停止の価値 vt(.; 0) = 0と基準化できるなら，動学的な部分の補正項を作成して静学
的な 2値ロジット・モデルに加えれば，効用関数の母数を簡単に推定できる（CCP法）．以下では本稿のモデ
ルに沿って，β が未知で σ ̸= 1，vt(.; 0) ̸= 0の場合に CCP法を修正・拡張する．
継続時の効用関数 ut(1; .)は時点 tに依存せず（除外制約），停止の価値関数 vt(.; 0)は状態ベクトル xt に
依存しないと仮定する．yt := vt(.; 0)とすると，式 (13)より時点 t = 0, . . . , T − 1において，任意の xt につ
いて

vt(xt; 1)− vt(xt; 0) = ut(1;xt) + β E(vt+1(xt+1; 0)− σ ln pt+1(0|xt+1)|xt; 1)− vt(xt; 0)

= u(1;xt) + βyt+1 − βσ E(ln pt+1(0|xt+1)|xt; 1)− yt
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式 (11)に代入すると，任意の xt について

pt(1|xt) = Λ

(
u(1;xt)

σ
+
βyt+1

σ
− βzt(xt)−

yt
σ

)
ただし

zt(xt) := E(ln pt+1(0|xt+1)|xt; dt = 1) =

∫
ln pt+1(0|xt+1) dFt+1(xt+1|xt; dt = 1) (21)

{Ft(.|.; .)}, {pt(.|.)}から {zt(.)}は計算できる．なお pt(.|.) ∈ [0, 1]より zt(.) ≤ 0の符号制約がある．ここで
σ = 1，yt = 0と基準化できるなら，任意の xt について

pt(1|xt) = Λ(u(1;xt)− βzt(xt))

すなわち β が既知なら静学的な 2値ロジット・モデルに補正項 −βzt(xt)を加えれば，u(1; .)の母数を簡単に
推定できる．CCP法の解説は Arcidiacono and Ellickson (2011, pp. 381–382)を参照．
u(1;xt) := x′

tθ と定式化し，η := σ−1 とする．{yt}が既知なら無作為標本 {di,t,xi,t}を用いて以下の手
順で構造母数 (θ, β, η)を推定できる．

1. 状態遷移確率分布 {Ft(.|.; .)}を推定し，推定値を
{
F̂t(.|.; .)

}
とする．

2. 誘導形の CCP関数 {pt(.|.)}をノンパラメトリック回帰で推定し，推定値を {p̂t(.|.)}とする．
3.
{
F̂t(.|.; .)

}
, {p̂t(.|.)}から補正関数 {ẑt(.)}を計算する．

4. 次式の 2値ロジット・モデルを用いて (θ, β, η)を最尤法で推定する．

pt(1|xi,t) = Λ
(
x′
i,tηθ + βηyt+1 − βẑt(xi,t)− ηyt

)
必要なら最後のステップで β ∈ [0, 1]，η > 0の制約を課す．

5.3 BCNP法
Bajari et al. (2016, sec. 3.3)は CCP法をさらに簡単化した（BCNP法と呼ぶ）．変更点は 2つある．

1. 状態遷移確率分布 {Ft(.|.; .)}を使わずに，ノンパラメトリック回帰で補正関数 {zt(.)}を推定する．そ
のため状態ベクトル {xt}が連続でも {zt(.)}を容易に計算できる．ただし推定した補正関数は必ずし
も zt(.) ≤ 0の符号制約を満たさない．

2. 2値ロジット・モデルでなく，対数オッズ比のノンパラメトリック推定値を従属変数としたモデルに最
小 2 乗法を適用して構造母数を推定する．そのため推定効率は少し低下するが，推定結果は安定しや
すい．

BCNP法は以下の手順で最小 2乗法を 3回繰り返して構造母数 (θ, β, η)を推定する．

1. 誘導形の CCP関数 {pt(.|.)}をノンパラメトリック回帰で推定し，推定値を {p̂t(.|.)}とする．
2. {p̂t(.|.)}を用いて E(ln p̂t+1(0|xt+1)|xt; dt = 1)のノンパラメトリック回帰で {zt(.)}を推定し，推定
値を {z̃t(.)}とする．

3. 次式を用いて (θ, β, η)を非線形最小 2乗法で推定する．

ln
p̂t(1|xi,t)

p̂t(0|xi,t)
= x′

i,tηθ + βηyt+1 − βz̃t(xi,t)− ηyt

必要なら最後のステップで β ∈ [0, 1]，η > 0の制約を課す．
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5.4 修正 CCP法
CCP法と BCNP法には一長一短がある．CCP法の最後のステップは，小標本で停止の観測数が少ないと

2値ロジット・モデルに完全分離が生じ，推定値が存在しない場合がある．ノンパラメトリック回帰で推定す
る BCNP法の補正関数は，必ずしも符号制約を満たさない．本稿では両者の欠点を補う中間的な手法（修正
CCP法と呼ぶ）を採用し，以下の手順で構造母数を推定する．

1. 状態遷移確率分布 {Ft(.|.; .)}を推定し，推定値を
{
F̂t(.|.; .)

}
とする．

2. 誘導形の CCP関数 {pt(.|.)}をノンパラメトリック回帰で推定し，推定値を {p̂t(.|.)}とする．
3.
{
F̂t(.|.; .)

}
, {p̂t(.|.)}から補正関数 {ẑt(.)}を計算する．

4. 次式を用いて (θ, β, η)を非線形最小 2乗法で推定する．

ln
p̂t(1|xi,t)

p̂t(0|xi,t)
= x′

i,tηθ + βηyt+1 − βẑt(xi,t)− ηyt (22)

必要なら最後のステップで β ∈ [0, 1]，η > 0の制約を課す．

6 モンテカルロ実験
6.1 大学中退モデル
大学中退の逐次意思決定モデルの構造母数について，修正 CCP法による推定量の性質を簡単なモンテカル
ロ実験で確認する．在学者は毎学期 12 科目履修すると仮定し，8 学期の在籍と 64 科目の修得を卒業要件と
する．卒業要件を満たさなければ留年となる．観測期間は第 1～8期の 8期間とし，留年者の第 9期以降の選
択・状態は観測しない．また第 1期の期首の退学者は入学者に含まれず存在しない．
学生 iの第 t期の修得科目数を ni,t，累積修得科目数を Ni,t とする．1学期当たり 8科目修得すれば 8学期
で 64科目となるので，超過累積修得科目数を N∗

i,t := Ni,t − 8tと定義する．1～4の 4つの水準に離散化した
GPA水準を gi,t とする．第 t期の期首の選択（在学ダミー）を di,t，状態ベクトルを xi,t :=

(
N∗

i,t−1, gi,t−1

)′
とする．
単純化のため ni,t は gi,t のみ，gi,t は gi,t−1 のみに依存すると仮定する．在学した場合の状態遷移確率分布
は，確率の乗法定理より，任意の N∗ と g = 1, . . . , 4について
Pr
[
N∗

i,t = N∗, gi,t = g|N∗
i,t−1, gi,t−1

]
= Pr

[
N∗

i,t = N∗|gi,t = g,N∗
i,t−1, gi,t−1

]
Pr
[
gi,t = g|N∗

i,t−1, gi,t−1

]
= Pr

[
N∗

i,t = N∗|gi,t = g,N∗
i,t−1

]
Pr[gi,t = g|gi,t−1] (23)

ただし
Pr
[
N∗

i,t = N∗|gi,t = g,N∗
i,t−1

]
= Pr[Ni,t − 8t = N∗|gi,t = g,Ni,t−1]

= Pr[Ni,t−1 + ni,t − 8t = N∗|gi,t = g,Ni,t−1]

= Pr[ni,t = N∗ + 8t−Ni,t−1|gi,t = g,Ni,t−1] (24)

翌学期も同じ GPA水準に留まる確率を π とし，{gi,t}に次の遷移確率行列を仮定する．

P :=


π 1− π 0 0

(1− π)/2 π (1− π)/2 0
0 (1− π)/2 π (1− π)/2
0 0 1− π π


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表 2: 中途退学・卒業・留年した場合の生涯賃金（2016年 4月入学者）

年 月 男 女
2016 4 — —

10 207,838,900 147,104,000

2107 4 208,779,700 147,913,000

10 207,251,200 146,605,850

2018 4 207,926,300 146,932,400

10 206,155,950 145,468,700

2019 4 203,512,200 144,225,000

10 201,730,050 142,735,600

2020 4 199,947,900 141,246,200

大卒 269,122,266 217,302,214

注：労働政策研究・研修機構 (2021, pp. 319–320)にしたがって各年の「賃金構造基本統計調査」の年齢階級
別「きまって支給する現金給与額」と翌年調査の「年間賞与等」から計算．
資料：「賃金構造基本統計調査」（平成 28～令和 2年）

科目修得確率は GPA水準の増加関数とし，ni,t|gi,t ∼ Bin(12, p(gi,t))と仮定する．
退学・卒業・留年の価値は状態ベクトル（成績）に依存せず，期待生涯賃金として観測されると仮定する．*6
したがって効用は金額で測られる．在学時の効用関数 u(1; .)は学期 tに依存せず，状態ベクトルの線形関数
とする．すなわち任意の xi,t :=

(
N∗

i,t−1, gi,t−1

)′ について
u(1;xi,t) := α+ κN∗

i,t−1 + λgi,t−1 (25)

効用の確率的な部分 {ei,t(j)}は平均 0，尺度母数 σ の独立かつ同一なガンベル分布にしたがうと仮定する．

6.2 実験デザイン
本稿では退学の価値＝退学後の生涯賃金とし，労働政策研究・研修機構 (2021, pp. 319–320)にしたがって
退学後の生涯賃金を計算する．具体的には入学時の年齢を 18歳とし，大学中退＝高卒扱いと仮定して，退学
時点の「賃金構造基本統計調査」の年齢階級別「きまって支給する現金給与額」と翌年調査の「年間賞与等」
から退学後の生涯賃金を男女別に計算する．大学卒業の価値も同様．便宜的に留年の価値＝入学 4年後の退学
の価値とする．*7 2016年 4月入学者の生涯賃金の計算結果は表 2の通りである．一般に遅く退学すると労働
期間が短くなり生涯賃金は減少するが，賃金水準の上昇により期待生涯賃金が増加する場合もある．以下の実
験では 2016年 4月入学者の男子を想定する．
次のように構造母数を設定する．

• 割引因子：β = .98

*6 留年＝在学なので留年の価値は成績に依存すると考えられるが，ここでは構造母数の推定量の性質を調べるのが目的なので，意思
決定モデルを単純化して実験を行う．

*7 実際の留年の価値は入学 4年後の状態ベクトル（成績）に依存する．卒業・留年の価値は構造母数の推定には不要だが，在学／退
学の意思決定のシミュレーションに必要となる．
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• 尺度母数：σ = 100（万円）すなわち η := 1/σ = .01

• 効用関数の係数：α = κ = λ = 0

• 同じ GPA水準に留まる確率：π = .5

• 科目修得確率：p(1) = .6, p(2) = .7, p(3) = .8, p(4) = .9

退学・卒業・留年の価値と状態遷移確率分布から式 (15)の後ろ向き帰納法で在学の価値関数を計算し，在学
／退学の価値関数から式 (11)の CCP 関数（在学確率関数）{pt(1|.)}を得る．図 2は学期・GPA水準別の
{pt(1|.)}のプロットである．超過累積修得科目数が多く，GPA水準が高く，学年が低いほど在学確率は高い．
超過累積修得科目数が極端に少なく卒業の見込みがないと在学確率はほぼ 0になる．*8 第 4期の在学確率の下
限が 0より少し大きいのは，退学の価値（生涯賃金）が翌学期に上昇するためと解釈できる．学生 iの第 1期
の GPA水準 gi,1 を {gi,t}の定常分布から生成し，それを初期値として状態遷移確率分布にしたがって在学中
の状態ベクトル {xi,t}を生成する．一様乱数 U ∼ U[0, 1]を生成し，di,t := [U ≤ pt(1|xi,t)]として在学中の
意思決定をシミュレートする．
状態遷移確率分布は学期別の経験分布で推定する．誘導形の CCP関数は一般化加法モデルで推定する．た
だし中退確率の対数値から補正関数を作成するので，推定した中退確率が (0, 1]に収まるように，ロジット関
数をリンク関数とする．具体的には学期・GPA水準を離散変数，超過累積修得科目数を連続変数とし，各離
散変数のダミー変数と連続変数のノンパラメトリックな非線形変換の交互作用を導入して，在学／退学の 2値
ロジット・モデルを推定する．すなわち t = 2, . . . , T , g = 1, . . . , 4と任意の N∗ について

pt
(
1|N∗

i,t−1 = N∗, gi,t−1 = g
)
= Λ

(
T∑

s=2

[s = t]ϕs(N
∗) +

4∑
l=1

[l = g]ψl(N
∗)

)
(26)

非線形関数 {ϕt(.)}, {ψg(.)}のノンパラメトリック推定には平滑化スプラインを用いる．平滑化スプラインと
一般化加法モデルの入門的な解説は James et al. (2021, secs. 7.5, 7.7)，より実践的な解説はWood (2017)

を参照．
計算には R Core Team (2022)が開発した無料の統計ソフト R 4.2.0を使用する．一般化加法モデルの推定
には Rの標準ライブラリの mgcvパッケージを使用し，薄板回帰スプラインを基底として GCV基準で平滑化
パラメーターを選択する．β, η が所与なら式 (22)は θ について線形なので，数値計算の効率化のために，ま
ず β, η を所与として θ について残差 2乗和を最小化し，その最小残差 2乗和関数を (β, η)について最小化す
る．*9 実験では β, η の範囲を制約せずに推定量の性質を調べる．

6.3 実験結果
単純化のため κ = λ = 0は既知とする．したがって構造母数は在学の効用 α，割引因子 β，尺度母数の逆数

ηの 3つとなる．入学者数 nのパネル・データをシミュレーションで生成し，修正 CCP法で (α, β, γ)を推定
する試行を 100回繰り返して推定値

(
α̂, β̂, η̂

)
の分布を得る．この分布を n = 300, 3000, 30000の 3つのケー

スで比較する．
まず図 2の真の CCP関数を用いて修正 CCP法を適用し，構造母数の識別を確認する．図 3は α̂, β̂, η̂ の

*8 留年の価値を高く設定すれば，超過累積修得科目数が少なくても在学確率は必ずしも 0にならない．
*9 最小化の数値計算の精度を高めるために，まず (β, η) の真の値を初期値として大域的な収束に優れた Nelder–Mead 法で近似解
を求め，その結果を初期値として局所的な収束に優れた L-BFGS-B 法を適用する．R の optimx パッケージの polyopt 関数は
複数の反復法を逐次的に適用する際に便利である．
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図 2: 学期・GPA水準別の在学確率関数

同時／周辺分布を n = 300, 3000, 30000 の 3 つのケースで比較する散布図行列である．対角線上の確率密度
関数の形状の変化より明らかに CCP関数が既知なら推定量は一致性をもつ．Bajari et al. (2016, sec. 4)は
η := 1 と基準化したモデルで BCNP 法を適用し，同様の結果を得ている．したがって Bajari et al. (2016,

p. 297)が指摘するように，誘導形の CCP関数の推定精度が CCP/BCNP法の成功の鍵となる．また α̂と β̂

に強い負の相関が見られる．モデルの構造より β が小さいと卒業の価値が大きく割り引かれるため，αが大き
くないと誰も在学を選択しない（図 1a, 1bを参照）．このトレードオフ関係を負の相関は表していると解釈で
きる．
次に推定した CCP関数を用いる本来の修正 CCP法を適用し，構造母数の推定量の性質を確認する．図 4

は α̂, β̂, η̂ の周辺分布を n = 300, 3000, 30000の 3つのケースで比較する箱ひげ図，表 3は 3つのケースにお
ける α̂, β̂, η̂ の周辺分布の 5数要約である．どのケースも外れ値が多く，α̂, η̂ に極端な外れ値も見られる．式
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図 3: 真の CCP関数を用いた修正 CCP法による構造母数の 100個の推定値の散布図行列

(22)より η = 0だと αは識別されず（ただし σ ∈ (0,∞)より η = 0は母数空間に本来は含まれない），η̂ ≈ 0

だと α̂は外れ値になりやすい．α̂の中央値は約 2000～3000（万円）と高すぎる．β̂ の中央値は .9未満と低す
ぎる．η̂ は負の値もある．α̂の四分位範囲は n = 3000より n = 30000の方が広く，全体として推定量の一致
性は見られない．
実験結果は次のように解釈できる．

1. 小標本のノンパラメトリック回帰に一般化加法モデルは便利だが，交互作用を導入しても加法性の制約
は残る．より柔軟な定式化が大標本では必要かもしれない．ただし計算の負荷は増大する．

2. Bajari et al. (2016, appx. C)によれば，CCP/BCNP法による構造母数の推定量の一致性のためには，
誘導形の CCP関数のノンパラメトリック推定量が n−1/4 より速く真の CCP関数に一様収束する必要
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図 4: 修正 CCP法による構造母数の 100個の推定値の分布の箱ひげ図

表 3: 修正 CCP法による構造母数の 100個の推定値の分布の 5数要約

n = 300 n = 3000 n = 30000

α̂ β̂ η̂ α̂ β̂ η̂ α̂ β̂ η̂

最小値 −76182 .743 −4110.066 −8144 .785 −.196 −129711 .683 −.019

Q1 1344 .811 −.002 1121 .839 .003 1387 .817 .001

Q2 3049 .861 .010 1754 .874 .005 2183 .833 .004

Q3 3986 .928 .047 2382 .914 .008 2823 .862 .006

最大値 3207685911 1.723 14.943 263209 1.244 .017 34211 1.114 .086

がある．Rの mgcvパッケージを用いた一般化加法モデルの推定は，与えられた標本に対して最適な平
滑化を自動的に行うので便利だが，構造母数の推定量の一致性の条件を満たすとは限らない．

実際の応用では個別の状況に応じて定式化／平滑化を試行錯誤する必要がある．

7 応用
7.1 使用データ
分析には某大学某学部 2016年 4月入学者（男子 301名・女子 101名）の入学後 4年間の成績データを使用
する．分析の単純化のため休学の意思決定は考慮せず，休学者は休学期間中の修得単位数が 0の在学者として
扱う．留学のために休学した学生が留学先で修得した単位の読み替えを希望する場合は，帰国後に申請して認
められれば翌学期（復学した学期）の修得単位となる．4年次終了時の卒業／留年（卒業延期を含む）／退学
の意思決定は本稿では扱わない．4年次終了時点での中途退学者数は男子 12名・女子 2名，卒業者数は男子
242名・女子 94名，留年者数は男子 47名・女子 5名であった（表 4）．
在学／退学の意思決定の際に考慮する退学の価値（＝期待生涯賃金）は，表 2の通り観測可能とする．また
分析者が観測する状態変数は，簡単化のため以下の 2変数のみとする．

超過累積修得単位数 累積修得単位数は卒業の可能性の判断に役立つ．某大学某学部には 1～3年次留年・飛
び級・早期卒業制度はなく，全員が 4年次まで毎年進級できる．卒業必要単位数は 128単位である．分
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表 4: 某大学某学部 2016年 4月入学者の 2020年 3月末時点の中途退学・卒業・留年状況

入学者数 退学者数 卒業者数 留年者数 退学／入学 卒業／入学 留年／入学
男 301 12 242 47 .040 .804 .156

女 101 2 94 5 .020 .931 .050

計 402 14 336 52 .035 .836 .129

注：退学は復籍していない除籍者を含む．

(a) 男 (b) 女

図 5: 男女別の各学生の超過累積修得単位数の推移

析の単純化のため単位数以外の卒業要件（必修科目等）は考慮しない．なお 1年次は通年 32単位，2年
次以降は通年 48単位の登録単位制限があるが，制限の対象外の科目もあり，制限を超えた単位数を修
得する学生も珍しくない．1学期当たり 16単位修得すれば 8学期で 128単位となるので，第 t期の累
積修得単位数を Nt として超過累積修得単位数を N∗

t := Nt − 16tと定義する．
GPA GPA は大学での勉強に対する適性の判断に役立つ．某大学では成績評価の「秀」を 4 点，「優」を 3

点，「良」を 2点，「可」を 1点，「不可」を 0点として GPAを定めている．定期試験を欠席した科目は
2018年度まで GPA算出の対象外であったが，2019年度から「不可」扱いとなった．なお履修登録数
が 0だとGPAは定義できず欠損値となるが，以下では便宜的に履修登録数が 0ならGPAは 0とする．

図 5は男女別の各学生の超過累積修得単位数の推移である．多くの学生が卒業に必要な 128単位を 3年次ま
でに修得している（N∗

6 ≥ 32）．4年次終了時に 128単位を修得していない（N∗
8 < 0）学生は男子に多い．

表 5は使用する成績データの要約統計量である．特徴は以下の通りである．

1. 男子は 1年次後期から各学期で退学者（＝欠損数の増分）が発生しているが，女子は 4年間で 2名のみ
である．

2. 男女とも 4年次は修得単位数が少なく GPAも低い．これは卒業必要単位数を超えて履修する学生が少
ないためである．また定期試験を欠席した科目が 2019年度から「不可」扱いとなり，GPAの低下を防
ぐために履修科目を絞った可能性もある．

3. 1～3年次は前期より後期の方が修得単位数が多い．これは通年科目の単位認定が後期に行われるため
である（某大学では 1・2年次の語学科目に通年科目が多く，某学部では 3年次ゼミのみ通年科目）．
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4. 修得単位数・GPAの平均は男子より女子の方が高く，標準偏差は男子より女子の方が小さい．

男女の異質性より男女別の推定が望ましいが，女子の中途退学者数が僅か 2名と少ないため，以下では分析対
象を男子に限定する．

7.2 モデルの定式化
第 1期（1年次前期）の期首の退学者は入学者に含まれないので第 2期（1年次後期）～第 8期（4年次後
期）の在学／退学の意思決定を考える．すなわち T := 8とする．学生 iの第 t期の修得単位数を ni,t，累積
修得単位数を Ni,t，超過累積修得単位数を N∗

i,t := Ni,t − 16t，GPAを g∗i,t とする．分析の単純化のため g∗i,t

を 4つの水準に離散化し，その変数を gi,t とする．すなわち

gi,t :=


1 if g∗i,t ∈ [0, 1)

2 if g∗i,t ∈ [1, 2)

3 if g∗i,t ∈ [2, 3)

4 if g∗i,t ∈ [3, 4]

学生 iの第 t期の期首の選択（在学ダミー）を di,t，状態ベクトルを xi,t := (N∗
i,t−1, gi,t−1)

′ とする．
モンテカルロ実験と同様に式 (25)の効用関数と式 (23)の状態遷移確率分布を仮定する．ただし科目数でな
く単位数を用いるので式 (24)は修正する．すなわち任意の N∗ と g = 1, 2, 3, 4について

Pr
[
N∗

i,t = N∗|gi,t = g,N∗
i,t−1

]
= Pr[ni,t = N∗ + 16t−Ni,t−1|gi,t = g,Ni,t−1]

状態遷移確率分布は学期別の経験分布でノンパラメトリックに推定する．表 6は学期別の GPA水準の遷移
確率行列，すなわち {ft(gi,t|gi,t−1)}のノンパラメトリック推定値である．4年次を除いて GPA水準の大幅
な階層移動は少なく，GPA が大学での勉強に対する適性を反映していると解釈できる．図 6 は学期・GPA

水準別の修得単位数の度数多角形（相対度数），すなわち {ft(ni,t|gi,t)}のノンパラメトリック推定値である．
GPAが低いと修得単位数が少ない傾向が読み取れる．

7.3 推定手順
まず第 2～8期の在学確率関数を一般化加法モデルで推定する（第 1期の退学は存在しない）．ただし小標本
かつ退学者数も少ないため，モンテカルロ実験の場合と異なり，交互作用を導入すると在学確率が超過累積修
得単位数の単調な増加関数にならない．そこで式 (26)でなく通常の（交互作用なしの）一般化加法モデルを
用いる．すなわち t = 2, . . . , T , g = 1, . . . , 4と任意の N∗ について

pt
(
1|N∗

i,t−1 = N∗, gi,t−1 = g
)
= Λ

(
T∑

s=2

[s = t]ϕs +

4∑
l=1

[l = g]ψl + f(N∗)

)
(27)

ただし {ϕt}, {ψg}は係数で f(.)はノンパラメトリックな関数．
図 7は推定した在学確率関数の学期・GPA水準別のプロットである．超過累積修得単位数が正なら在学確
率は 1に近い．各学期の修得単位数が 0だと超過累積修得単位数は 16単位ずつ減少する．修得単位数 0が続
くと在学確率が低下する傾向が，特に 3年次以降で GPA水準が 1のグループに顕著である．ただしモンテカ
ルロ実験の理論的な在学確率関数（図 2）と異なり，累積修得単位数が 0でも在学確率は 0にならない．これ
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表 5: 成績データの要約統計量

(a) 男

変数 学期 観測数 欠損数 平均 標準偏差 最小値 Q1 Q2 Q3 最大値
修得単位数 1 301 — 15.5 3.9 0 15 17 17 22

2 298 3 20.1 5.8 0 19 21 23 30

3 297 4 16.3 6.6 0 12 16 20 34

4 296 5 20.6 7.9 0 16 22 26 40

5 294 7 19.1 6.7 0 16 20 22.8 36

6 291 10 21.0 7.4 0 18 22 26 54

7 290 11 7.7 7.1 0 2 6 12 32

8 289 12 5.1 7.1 0 0 2 8 30

GPA 1 301 — 2.35 .80 .00 1.89 2.47 2.93 4.00

2 298 3 2.24 .84 .00 1.72 2.38 2.86 3.86

3 297 4 1.79 .81 .00 1.22 1.83 2.38 3.64

4 296 5 2.09 .81 .00 1.57 2.17 2.68 4.00

5 294 7 2.03 .85 .00 1.50 2.00 2.58 3.78

6 291 10 2.17 .78 .00 1.72 2.25 2.69 4.00

7 290 11 1.24 1.01 .00 .21 1.17 2.00 4.00

8 289 12 1.14 1.26 .00 .00 .90 2.00 4.00

(b) 女

変数 学期 観測数 欠損数 平均 標準偏差 最小値 Q1 Q2 Q3 最大値
修得単位数 1 101 — 16.6 2.6 5 15 17 19 21

2 101 0 21.8 4.4 0 21 23 25 29

3 100 1 16.8 5.9 0 14 17.5 20 36

4 100 1 23.8 6.1 6 20 24 28 40

5 100 1 19.6 5.9 0 16 20 22 32

6 100 1 22.9 6.3 0 20 23 26 50

7 99 2 6.7 7.0 0 0 4 10 26

8 99 2 3.6 6.2 0 0 0 4 25

GPA 1 101 — 2.60 .62 .85 2.27 2.60 3.00 3.92

2 101 0 2.63 .70 .00 2.28 2.65 3.08 3.91

3 100 1 2.13 .77 .00 1.57 2.12 2.72 3.83

4 100 1 2.51 .65 1.00 2.00 2.54 3.00 3.92

5 100 1 2.28 .85 .00 1.67 2.32 2.89 3.75

6 100 1 2.47 .72 .00 2.00 2.54 3.00 3.75

7 99 2 1.36 1.23 .00 .00 1.40 2.28 4.00

8 99 2 1.19 1.51 .00 .00 .00 2.00 4.00
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表 6: 学期別の GPA水準の遷移確率行列

前期 後期
年次 GPA 1 2 3 4 計 1 2 3 4 計
1 1 .08 .22 .51 .20 1.00 .67 .29 .05 .00 1.00

2 .14 .60 .26 .00 1.00

3 .01 .22 .66 .12 1.00

4 .00 .00 .42 .58 1.00

2 1 .71 .21 .08 .00 1.00 .36 .42 .22 .00 1.00

2 .37 .58 .05 .00 1.00 .06 .48 .43 .02 1.00

3 .10 .47 .41 .03 1.00 .01 .17 .62 .20 1.00

4 .00 .17 .58 .25 1.00 .06 .06 .47 .41 1.00

3 1 .41 .41 .17 .00 1.00 .35 .47 .15 .03 1.00

2 .18 .52 .27 .02 1.00 .09 .51 .38 .02 1.00

3 .05 .32 .56 .08 1.00 .01 .16 .74 .09 1.00

4 .00 .10 .34 .55 1.00 .00 .00 .31 .69 1.00

4 1 .64 .36 .00 .00 1.00 .61 .22 .09 .08 1.00

2 .41 .45 .14 .00 1.00 .40 .42 .13 .05 1.00

3 .41 .31 .24 .04 1.00 .56 .15 .17 .12 1.00

4 .70 .06 .15 .09 1.00 .44 .00 .11 .44 1.00

は実験の設定と異なり実際は成績が向上すれば留年の価値が高まることや，休学制度の存在が理由として考え
られる．
次に図 7の在学／退学確率関数（CCP関数）と表 6・図 6の状態遷移確率分布を用いて定義式 (21)より第

2～7期の補正関数 {zt(.)}を作成する．在学の期待価値関数 V e
t (.; 1) = yt+1 − σzt(.)は −zt(.)に比例する．

図 8は作成した補正関数の符号を反転した {−ẑt(.)}の学期・GPA水準別のプロットである．推定した在学確
率関数の平滑化スプラインが直線に近いため，補正関数も直線に近い．GPA水準が高く超過累積修得単位数
が多いほど在学の期待価値は高い．ただし卒業が確定して単位が不要になると以降の GPA水準が下がるため
（表 6），第 7期のみ（前期の）GPA水準による差は小さくなっている．
最後に図 7の在学確率関数から得られる在学／退学の対数オッズ比のノンパラメトリック推定値を従属変
数とし，図 8の補正関数を説明変数に加えて式 (22)を非線形最小 2乗法で推定する．β, η が所与なら式 (22)

は線形なので，β, η を所与として θ について残差 2乗和を最小化し，それを β を所与として η について最小
化し，最後に β について最小化する．必要なら β, η の範囲を制約する．標準誤差・信頼区間が必要ならブー
トストラップ法で求める．
なお誘導形の CCP 関数から従属変数を作成するため，補正関数を除く構造モデルの説明変数が誘導形の

CCP関数の説明変数と同じだと，最小 2乗法は完全に当てはまり，補正関数の係数 β の推定値は 0となる．
特に小標本で誘導形の CCP関数の定式化が単純になる場合，それ以上に構造モデルの定式化を単純にする必
要がある．そのため式 (25)の効用関数では GPA水準を質的変数でなく量的変数として扱っている．
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図 6: 学期・GPA水準別の修得単位数の度数多角形（相対度数）

7.4 推定結果
割引因子 β は非負（かつ 1以下），尺度母数の逆数 η は正の符号制約がある．表 7は制約の有無による構造
母数の点推定値の比較である（推定誤差は後述）．制約なしだと β̂ > 1，η̂ < 0の点推定値となる．η に非負制
約を課すと β̂ > 1，η̂ = 0の端点解となる．β ∈ [0, 1]の制約も課すと β̂ = 1，η̂ = 0の端点解となる．*10
構造母数の推定誤差はブートストラップ法で評価する．図 9は 99回のブートストラップで求めた β, η の制

*10 Rの optimize関数は 1変数関数を閉区間上で最小化するので実際の計算では有限の下限値・上限値が必要．ここでは制約なしは
β, η ∈ [−10, 10]，非負制約は η ∈ [0, 10]としている．また optimize関数は端点の近傍で反復計算を停止するため η̂ = 0（実際
は η̂ ≈ 0）でも効用関数の係数の点推定値が求まっている．
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図 7: 学期・GPA水準別のノンパラメトリックな在学確率関数

表 7: 割引因子・尺度母数の制約の有無による構造母数の点推定値の比較

制約なし η ≥ 0 β ∈ [0, 1], η ≥ 0

割引因子（β） 1.338 1.302 1.000

1/尺度母数（η） −0.006 0.000 0.000

定数項 −4945.083 −191788.600 −195147.500

超過累積修得単位数 14.279 −947.269 −922.658

GPA水準 −559.281 54516.080 80658.040

残差 2乗和 66200.65 68312.41 70178.46
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図 8: 学期・GPA水準別の補正関数（符号を反転）

約なしの推定量の分布である．*11 モンテカルロ実験の結果と異なり β̂ に負の値があり，η̂ に極端な外れ値も
見られ，入学者数 n = 301（男子）の小標本では β, η の正確な推定は困難に思える．そこで以下では β, η を
先験的に与えて分析を進める（実際に多くの先行研究は β を先験的に与え，η = 1と基準化している）．
割引因子 β は .98または 1と想定する．β = .98は年率約 4.1％の割引率に相当し，多くの先行研究の想定
値に近い．β = 1は制約付き推定の端点解である．尺度母数 σ の逆数 η は .01または .05と想定する．どちら
も図 9の分布と整合的であり，η = .01なら σ = 100（万円），η = .05なら σ = 20（同）となる．
表 8は上記 4ケースの構造母数の点推定値と 99回のブートストラップで求めた 90％ブートストラップ信
頼区間である．どのケースも各係数の 90％信頼区間は 0を含んでおり，点推定値は有意水準 5％の片側検定
で統計的に有意でない．統計的有意性は別として，点推定値から以下の傾向が読み取れる．

1. β が小さいと在学の効用が大きくなる．
2. η が小さい（＝ σ が大きい）と GPA水準による在学の効用の格差が大きくなる．

前者は β が小さいと卒業の価値（＝大卒の生涯賃金）が大きく割り引かれるため，それを補う分だけ在学の効
用が大きくなると解釈できる（そうでないと誰も在学を選択しない）．後者は説明変数の限界効果（＝係数の

*11 R の boot パッケージを使用．B 回のブートストラップによる α 分位点の自然な推定量はブートストラップ標本の第 (B + 1)α

順序統計量なので，B を 100でなく 99としている．Davison and Hinkley (1997, pp. 18–19)を参照．
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図 9: 割引因子・尺度母数（逆数）の推定量の分布（99回のブートストラップ）

表 8: 割引因子・尺度母数を先験的に与えた場合の構造母数の推定結果

(1) (2) (3) (4)

割引因子（β） .98 .98 1.00 1.00

1/尺度母数（η） .01 .05 .01 .05

定数項 −533.08 340.90 −938.45 −67.29

[−3091.0, 2220.0] [−171.0, 894.0] [−3431.0, 2479.0] [−566.0, 610.0]

超過累積修得単位数 −2.67 1.45 −2.55 1.58

[ −101.0, 83.5] [ −18.3, 18.5] [ −80.7, 148.0] [ −14.1, 31.5]

GPA水準 434.06 66.45 422.87 62.99

[ −189.0, 2221.0] [ −55.1, 2424.0] [ −206.0, 12378.0] [ −59.6, 2454.0]

残差 2乗和 76955.94 158544.10 77047.02 163001.50

注：括弧内は 90％ブートストラップ信頼区間（99回のブートストラップ）．

η 倍）が一定なら係数が η に反比例するためとも解釈できるが，超過累積修得単位数の係数に同様の関係は見
られず，非線形モデルなので実際はもう少し複雑である．超過累積修得単位数を 0として 1学期当たりの在学
の効用をケース (1)～(4)で比較すると，GPA水準＝ 1なら順に −99, 407,−516,−4（万円），GPA水準＝ 4

なら順に 1203, 607, 753, 185（同）となる．したがって 1学期当たりの在学の効用／費用を数百万円以内と考
えるなら，ケース (4)が最も妥当に見える．ただし残差 2乗和は 4ケース中最大となる．
分析結果の考察は以下のようにまとめられる．

1. 割引因子 β は 1に極めて近い．
2. 尺度母数 σ は 20万円程度．
3. 超過累積修得単位数・GPA水準が在学の効用に直接的に影響する証拠はない．
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構造モデルの解釈を通じて主観的な事前情報を取り込む手法は問題もあるが，小標本で情報が少なく他の手法
が困難な状況では止むを得ない．構造母数の想定値／推定値の妥当性は反実仮想分析でも検証できる．

7.5 反実仮想分析
最後に反実仮想分析の例として，某大学某学部 2016年 4月入学者の男子について，入学後 4年間の在学者
への学費補助（または授業料減免）が中退確率を引き下げる処置効果を試算する．4年間の学費補助は効用関
数の一時的な変化と解釈できる．したがって反実仮想 CCPの識別に効用関数の識別は不要である（4.5.1節
を参照）．すなわち誘導形の CCP関数（在学確率関数）と状態遷移確率分布を推定すれば，割引因子 β と尺
度母数 σを所与として，構造モデルの推定と独立に以下の反実仮想分析を実行できる．ただし小標本で中退者
が少ないと誘導形の CCP関数の推定精度が低い点は注意を要する．
構造モデルの推定結果を踏まえ，β = 1，σ = 20とする．毎学期 10万円の学費補助を想定し，式 (20)よ
り反実仮想の在学確率関数を計算して図 7の在学確率関数と比較する．図 10は学費補助が在学確率関数を引
き上げる処置効果である．もともと在学確率が 1の状態での処置効果は当然 0である．また在学の直接的な
効用が大きくない限り，卒業して大卒プレミアムを得る見込みがなければ在学確率は 0であり，学費補助は成
績に影響しないので処置効果も 0と考えられる．しかし累積修得単位数が 0でも図 7の在学確率は 0でなく，
GPA水準が 1なら図 10の処置効果は大きい．
図 11は β = .95, 1と σ = 20, 100の計 4つの組み合わせについて，毎学期 10万円の学費補助が累積中退
確率を引き下げる処置効果を比較している．*12 β が大きいと将来の学費補助の割引現在価値は大きくなるが，
観測値を所与として β の上昇は在学の直接的な効用の低下で相殺されるため，β ∈ [.95, 1]の範囲で処置効果
の点推定値の差は小さい．σ が大きいと効用に占める誤差（観測されない状態）の割合が大きくなり，学費補
助の処置効果は小さくなる．*13 σ = 20の基準ケースだと 4年間の累積中退確率は約 2.2%低下する．ただし
学費補助は成績に影響しないので，4年間の累積中退確率の低下は必ずしも卒業確率の上昇を意味しない．入
学者が 100人なら 4年間の学費補助の総額は最大 8000万円（退学者 0の場合），退学者が 2.2人減ると授業
料が 1学期 50万円なら 4年間の授業料収入の増加は最大 770万円（1年次後期の退学を防いだ場合）である．
したがって毎学期 10万円の学費補助は，卒業できる学生の利益にはなるが，そうでない学生の退学を遅らせ
るだけで，大学の利益にもならない可能性が高い．

8 おわりに
本稿では大学中退行動を最適停止問題として定式化し，某大学某学部 2016年 4月入学者のうち男子 301名
の入学後 4年間の成績データを用いて意思決定モデルの構造母数の推定と反実仮想分析を試みた．本稿と同様
に特定の大学・学部の学生の在学／退学の意思決定を分析した Stinebrickner and Stinebrickner (2014) は，
各学生の主観的な期待を学期毎にアンケート調査して分析に用いている．本稿は合理的期待を仮定する標準的
な分析手法を採用したが，以下の点で独自の工夫を加えている．

*12 統計量 T のブートストラップ標本の標本 α分位点を t̂∗α とすると，90％ブートストラップ信頼区間は [
2T − t̂∗.95, 2T − t̂∗.05

]な
ので，T ∈ (−1, 0)の制約があっても t̂∗.05 < 2T なら信頼区間の上限は正になる．−T をロジット変換して求めた信頼区間を逆変
換した信頼区間は制約を満たすが，−t̂∗.95 ≈ 0のロジット変換が −∞に近いと信頼区間の下限は −1に近くなる．

*13 反実仮想 CCPは補助額÷尺度母数で決まるので，σ = 100で毎学期 10万円の学費補助の反実仮想は σ = 20で毎学期 2万円の
学費補助の反実仮想とも解釈できる．
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図 10: 毎学期 10万円の学費補助が在学確率関数を引き上げる処置効果

1.「賃金構造基本統計調査」から計算した退学後の生涯賃金を観測可能な退学の価値とみなして短期パネ
ルでの構造母数（割引因子と尺度母数を含む）の識別を確保した．

2. CCP法を修正し，2値ロジット・モデルの完全分離の問題を回避した．
3. 構造母数の識別と推定精度をモンテカルロ実験で確認した．
4. 小標本で中退者が少ないと構造母数の推定精度が低いため，効用関数の識別を必要としない反実仮想分
析を行った．

学費補助（または授業料減免）は退学の意思決定を遅らせる効果を持つ．そのため入学後 4年間の中退率が
低下しても卒業率は必ずしも上昇せず，補助なしでも卒業する学生が最大の利益を得る．構造母数の推定精度
の問題はさておき，この種の結論は経済学では珍しくない．アメリカの白人男性のキャリア選択の意思決定モ
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図 11: 毎学期 10 万円の学費補助が累積中退確率を引き下げる処置効果：割引因子・尺度母数の値別の比較
（点推定値と 99回のブートストラップで求めた 90％ブートストラップ信頼区間）

デルを構造推定した Keane and Wolpin (1997)も，大学在学時の学費補助は大学進学率・卒業率を上昇させ
るが，補助なしでも進学・卒業する層が最大の利益を得ることを反実仮想分析で示している．両分析とも借入
制約を無視しているが，借入制約に直面する学生の支援は別の問題であろう．
本稿は大学中退モデルの構造推定の 1つの試みに過ぎず，実証研究としては課題が多い．特に構造母数の推
定精度は改善を要する．学生が同質的なら複数年度・類似学部の入学者をプールして標本を大きくできる．入
学から卒業までの学期毎のアンケート調査による追加的な情報収集も（4年かかるが）有用である．その他の
重要な検討課題を幾つか挙げておく．

1. 在学／休学／退学の 3つの選択肢で分析すると結果が変わるかもしれない．また休学時の在籍料に関す
る反実仮想分析も興味深い．

2. 構造母数に関する事前情報はベイズ法で扱うべきである．MCMCによるベイズ推定は一般に可能だが
数値計算の負荷が大きい．無限期間の定常な動的離散選択モデルについては Ching et al. (2012)が効
率的なアルゴリズムを解説している．

3. 効用関数の一時的な変化以外の反実仮想分析には留年の価値関数が必要となる．留年の価値関数をノン
パラメトリックな関数で近似し，後ろ向き帰納法で尤度関数を評価して他の構造母数と同時に推定する
手法も興味深い．例えば Jørgensen and Tô (2019)を参照．

また本稿では男女の異質性は統制したが，その他の異質性は統制していない．小標本で中退者が少ないと困難
も予想されるが，有限混合モデルで異質性を統制する手法も検討すべきである．
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なお本稿の目的は他大学・学部に一般化できる結論を得ることではない．男女に限らず大学・学部の入試難
易度や分野でも学生の中退率は大きく異なる（表 1）．したがって入学者をプールした分析より大学・学部別
の分析結果の比較の方が興味深い．本稿の単純な大学中退モデルと簡便な推定手法は，そのような比較のベン
チマークとして有用である．大学における IRの必要性から大学教員なら自分の大学・学部の学生のデータは
容易に入手できる．合理的な中退は学生よりむしろ大学にとって不利益が大きい．また入学定員制度の下で入
学時のミスマッチは社会的に非効率である．誘導形モデルによる中退予測の研究は既に広く行われており，構
造モデルによる中退防止策の反実仮想分析の研究の活発化も今後は期待したい．

謝辞
本稿の執筆期間中，大阪府立大学大学院経済学研究科に客員研究員として滞在した際は，鹿野繁樹教授に大
変お世話になった．また同氏の他，中尾圭介氏および大阪府立大学でのセミナー参加者から有益な示唆・助言
を頂いた．ここに記して感謝する．

参考文献
Abbring, J. H. and Daljord, Ø. (2020). Identifying the discount factor in dynamic discrete choice models,

Quantitative Economics, 11, 471–501.

Altonji, J. G. (1993). The demand for and return to education when education outcomes are uncertain,

Journal of Labor Economics, 11, 48–83.

姉川恭子 (2014). 「大学の学習・生活環境と退学率の要因分析」『経済論究』(149)，1–16．
Arcidiacono, P. (2004). Ability sorting and the returns to college major, Journal of Econometrics, 121,

343–375.

Arcidiacono, P. and Ellickson, P. B. (2011). Practical methods for estimation of dynamic discrete choice

models, Annual Review of Economics, 3, 363–394.

Arcidiacono, P. and Miller, R. A. (2020). Identifying dynamic discrete choice models off short panels,

Journal of Econometrics, 215, 473–485.

Bajari, P., Chu, C. S., Nekipelov, D. and Park, M. (2016). Identification and semiparametric estimation

of a finite horizon dynamic discrete choice model with a terminating action, Quantitative Marketing

and Economics, 14, 271–323.

Ching, A. T., Imai, S., Ishihara, M. and Jain, N. (2012). A practitioner’s guide to Bayesian estimation of

discrete choice dynamic programming models, Quantitative Marketing and Economics, 10, 151–196.

Daljord, Ø., Nekipelov, D. and Park, M. (2019). Comments on “identification and semiparametric es-

timation of a finite horizon dynamic discrete choice model with a terminating action”, Quantitative

Marketing and Economics, 17, 439–449.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application, Cambridge Uni-

versity Press.

Eisenhauer, P. (2018). The approximate solution of finite-horizon discrete-choice dynamic programming

models, Journal of Applied Econometrics, 34, 149–154.

Gabler, J. and Raabe, T. (2020). respy—a framework for the simulation and estimation of Eckstein–

36



Keane–Wolpin models, URL: https://github.com/OpenSourceEconomics/respy.

北條雅一 (2018). 「学歴収益率についての研究の現状と課題」『日本労働研究雑誌』(694)，29–38．
朴澤泰男 (2016a). 「全国高校生調査からみた大学中退タイミング」小林雅之（編）『経済的理由による学生等
の中途退学の状況に関する実態把握・分析等及び学生等に対する経済的支援の在り方に関する調査研究報告
書』，第 2章，7–15東京大学大学総合教育研究センター．

朴澤泰男 (2016b). 「奨学金は大学中退を抑制するか—時系列データを用いた検討」『家計経済研究』(110)，
75–83．

入江智也・丸岡里香 (2017). 「大学入学時における UPIの key項目への該当および居住形態が退学リスクに
及ぼす影響—生存時間分析を用いた検討—」『学生相談研究』38，1–11．

James, G., Witten, D., Hastie, T. and Tibshirani, R. (2021). An Introduction to Statistical Learning:

with Applications in R, 2nd ed., Springer.
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